dc.contributor.author | Krylovas, Aleksandras | |
dc.contributor.author | Kosareva, Natalja | |
dc.contributor.author | Zavadskas, Edmundas Kazimieras | |
dc.date.accessioned | 2023-09-18T17:38:51Z | |
dc.date.available | 2023-09-18T17:38:51Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1841-9836 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/124731 | |
dc.description.abstract | In this research 7 parametric classes of normalization functions depending on 1 or 2 parameters proposed for MCDM problem solution. Monte Carlo experiments carried out to perform comparative statistical analysis and find optimal parameter values for the case of Gaussian distribution of decision making matrix elements. Opti-mal parameter values were ascertained for each normalization method. Normalization formulas were compared with each other in the sense of their efficiency. Logarithmic and Max normalization formulas demonstrated highest values of the best alternative identification. The proposed methodology of determining optimal parameter values of normalization formulas could be applied by approximation of real data with appropriate probability distributions. | eng |
dc.format | PDF | |
dc.format.extent | p. 972-987 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | DOI | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://doi.org/10.15837/ijccc.2018.6.3398 | |
dc.source.uri | http://univagora.ro/jour/index.php/ijccc/article/view/3398/pdf | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:32628212/datastreams/MAIN/content | |
dc.title | Scheme for statistical analysis of some parametric normalization classes | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. | |
dcterms.references | 20 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
dc.contributor.department | Tvariosios statybos institutas / Institute of Sustainable Construction | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.researchfield | N 009 - Informatika / Computer science | |
dc.subject.vgtuprioritizedfields | FM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | normalization methods | |
dc.subject.en | multi-criteria optimization | |
dc.subject.en | Monte Carlo method | |
dc.subject.en | comparative statistical analysis | |
dc.subject.en | SAW | |
dcterms.sourcetitle | International journal of computers, communications & control (IJCCC) | |
dc.description.issue | iss. 6 | |
dc.description.volume | vol. 13 | |
dc.publisher.name | Agora University | |
dc.publisher.city | Oradia | |
dc.identifier.doi | 000451637900005 | |
dc.identifier.doi | 2-s2.0-85058158284 | |
dc.identifier.doi | 10.15837/ijccc.2018.6.3398 | |
dc.identifier.elaba | 32628212 | |