dc.contributor.author | Gribniak, Viktor | |
dc.contributor.author | Kaklauskas, Gintaris | |
dc.contributor.author | Kačianauskas, Rimantas | |
dc.contributor.author | Kliukas, Romualdas | |
dc.date.accessioned | 2023-09-18T19:09:42Z | |
dc.date.available | 2023-09-18T19:09:42Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1992-2248 | |
dc.identifier.other | (BIS)VGT02-000024829 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/136243 | |
dc.description.abstract | Adequate modeling of reinforced concrete (RC) cracking and, particularly post-cracking behavior, as one of the major sources of nonlinearity is an important and difficult task of deformation analysis. In smeared crack approach dealing with average cracking and strains, post-cracking effects can be modeled by stress-strain tension-stiffening relationships. Most of them were derived using test data of tension or shear RC members. Subsequently, these constitutive laws were applied for modeling of bending elements which behavior differs from tension or shear members. The authors have proposed an innovative ‘inverse’ technique for constitutive modeling of flexural RC elements. It is based on the smeared crack approach and 'layer’ section model. A number of investigations have shown that the ‘inverse’ technique becomes a powerful tool for constitutive analysis of flexural RC members, but its computation efficiency requires an additional study. This paper discusses the computational aspects of the ‘inverse’ procedure and reports recommendations improving efficiency of the constitutive modeling. | eng |
dc.format | PDF | |
dc.format.extent | p. 923-938 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Elektronische Zeitschriftenbibliothek EZB (nenaudotinas) | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | Chemical abstracts | |
dc.relation.isreferencedby | Agricultural Engineering Abstracts | |
dc.relation.isreferencedby | AGORA | |
dc.relation.isreferencedby | CAB Abstracts | |
dc.source.uri | http://www.academicjournals.org/SRE/PDF/pdf2012/29Feb/Gribniak%20et%20al.pdf | |
dc.title | Improving efficiency of inverse constitutive analysis of reinforced concrete flexural members | |
dc.type | Straipsnis kitoje DB / Article in other DB | |
dcterms.references | 32 | |
dc.type.pubtype | S3 - Straipsnis kitoje DB / Article in other DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | T 002 - Statybos inžinerija / Construction and engineering | |
dc.subject.researchfield | T 009 - Mechanikos inžinerija / Mechanical enginering | |
dc.subject.en | Inverse analysis | |
dc.subject.en | Constitutive modeling | |
dc.subject.en | Numerical technique | |
dc.subject.en | Computation efficiency | |
dc.subject.en | Reinforced concrete | |
dc.subject.en | Smeared crack model | |
dc.subject.en | Flexural test | |
dcterms.sourcetitle | Scientific research and essays | |
dc.description.issue | no. 8 | |
dc.description.volume | Vol. 7 | |
dc.publisher.name | Academic Journals | |
dc.publisher.city | Lagos | |
dc.identifier.doi | 10.5897/SRE11.1752 | |
dc.identifier.elaba | 3987260 | |