Rodyti trumpą aprašą

dc.contributor.authorRukšėnaitė, Jurga
dc.contributor.authorVaitkus, Pranas
dc.date.accessioned2023-09-18T19:22:29Z
dc.date.available2023-09-18T19:22:29Z
dc.date.issued2012
dc.identifier.issn1392-5113
dc.identifier.other(BIS)VGT02-000025458
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/138503
dc.description.abstractIn this paper, a method of artificial neural networks (NN) is proposed as an alternative tool for the one-step-ahead prediction of composite indicators (CIs) of Lithuania’s economy. CI is composed of widely used social and economic indicators. The NN is applied for forecasting CI during the financial crisis and later periods (2008–2010) on the basis of data of earlier years (1998– 2007). In this work, the Extreme Learning Machine (ELM) algorithm is combined with locally weighted regression. The analysis shows that the prediction error of a testing sample is statistically smaller compared to Levenberg–Marquardt or ELM methods.eng
dc.formatPDF
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyMathSciNet
dc.relation.isreferencedbyIndex Copernicus
dc.relation.isreferencedbyChemical abstracts
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyZentralblatt MATH (zbMATH)
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:4001285/datastreams/MAIN/content
dc.titlePrediction of composite indicators using combined method of extreme learning machine and locally weighted regression
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references33
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.encomposite indicators
dc.subject.enneural networks
dc.subject.enELM
dc.subject.enlocally weighted regression
dcterms.sourcetitleNonlinear analysis: modelling and control
dc.description.issueno.2
dc.description.volumevol. 17
dc.publisher.nameVilniaus universiteto leidykla
dc.publisher.cityVilnius
dc.identifier.doiVUB02-000044671
dc.identifier.doi000306680900009
dc.identifier.doi10.15388/NA.17.2.14071
dc.identifier.elaba4001285


Šio įrašo failai

Thumbnail
Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą