dc.contributor.author | Rukšėnaitė, Jurga | |
dc.contributor.author | Vaitkus, Pranas | |
dc.date.accessioned | 2023-09-18T19:22:29Z | |
dc.date.available | 2023-09-18T19:22:29Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1392-5113 | |
dc.identifier.other | (BIS)VGT02-000025458 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/138503 | |
dc.description.abstract | In this paper, a method of artificial neural networks (NN) is proposed as an alternative tool for the one-step-ahead prediction of composite indicators (CIs) of Lithuania’s economy. CI is composed of widely used social and economic indicators. The NN is applied for forecasting CI during the financial crisis and later periods (2008–2010) on the basis of data of earlier years (1998– 2007). In this work, the Extreme Learning Machine (ELM) algorithm is combined with locally weighted regression. The analysis shows that the prediction error of a testing sample is statistically smaller compared to Levenberg–Marquardt or ELM methods. | eng |
dc.format | PDF | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | MathSciNet | |
dc.relation.isreferencedby | Index Copernicus | |
dc.relation.isreferencedby | Chemical abstracts | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Zentralblatt MATH (zbMATH) | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:4001285/datastreams/MAIN/content | |
dc.title | Prediction of composite indicators using combined method of extreme learning machine and locally weighted regression | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 33 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.en | composite indicators | |
dc.subject.en | neural networks | |
dc.subject.en | ELM | |
dc.subject.en | locally weighted regression | |
dcterms.sourcetitle | Nonlinear analysis: modelling and control | |
dc.description.issue | no.2 | |
dc.description.volume | vol. 17 | |
dc.publisher.name | Vilniaus universiteto leidykla | |
dc.publisher.city | Vilnius | |
dc.identifier.doi | VUB02-000044671 | |
dc.identifier.doi | 000306680900009 | |
dc.identifier.doi | 10.15388/NA.17.2.14071 | |
dc.identifier.elaba | 4001285 | |