dc.contributor.author | Gaspar, Francisko | |
dc.contributor.author | Rodrigo, Carmen | |
dc.contributor.author | Čiegis, Raimondas | |
dc.contributor.author | Mirinavičius, Aleksas | |
dc.date.accessioned | 2023-09-18T19:37:31Z | |
dc.date.available | 2023-09-18T19:37:31Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1705-5105 | |
dc.identifier.other | (BIS)VGT02-000026271 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/141343 | |
dc.description.abstract | This paper deals with the numerical solution of both linear and non-linear Schrodinger problems, which mathematically model many physical processes in a wide range of applications of interest. In particular, a comparison of different solvers and different approaches for these problems is developed throughout this work. Two finite difference schemes are analyzed: the classical Crank-Nicolson approach, and a high-order compact scheme. Solvers based on geometric multigrid, Fast Fourier Transform and Alternating Direction Implicit methods are compared. Finally, the efficiency of the considered solvers is tested for a linear Schrodinger problem, proving that the computational experiments are in good agreement with the theoretical predictions. In order to test the robustness of the MG solver two additional Schrodinger problems with a non-constant potential and nonlinear right-hand side are solved by the MG solver, since the efficiency of this solver depends on such data. | eng |
dc.format.extent | p. 131-147 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Current Contents / Physical, Chemical & Earth Sciences | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.source.uri | http://www.math.ualberta.ca/ijnam/Volume-11-2014/No-1-14/2014-01-08.pdf | |
dc.subject | FM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes | |
dc.title | Comparison of solvers for 2D Schrodinger problems | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 27 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Departamento de Matematica Aplicada, Universidad de Zaragoza (Spain) | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | Finite difference method | |
dc.subject.en | Schrodinger problem | |
dc.subject.en | Multigrid m ethod | |
dc.subject.en | Alternating Direction Implicit method | |
dc.subject.en | Fast Fourier Transform method | |
dcterms.sourcetitle | International Journal of Numerical Analysis & Modeling | |
dc.description.issue | no.1 | |
dc.description.volume | Vol. 11 | |
dc.publisher.name | Wuhan University and Institute for Scientific Computing and Information | |
dc.publisher.city | Wuhan | |
dc.identifier.elaba | 4019484 | |