Rodyti trumpą aprašą

dc.contributor.authorGaspar, Francisko
dc.contributor.authorRodrigo, Carmen
dc.contributor.authorČiegis, Raimondas
dc.contributor.authorMirinavičius, Aleksas
dc.date.accessioned2023-09-18T19:37:31Z
dc.date.available2023-09-18T19:37:31Z
dc.date.issued2014
dc.identifier.issn1705-5105
dc.identifier.other(BIS)VGT02-000026271
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/141343
dc.description.abstractThis paper deals with the numerical solution of both linear and non-linear Schrodinger problems, which mathematically model many physical processes in a wide range of applications of interest. In particular, a comparison of different solvers and different approaches for these problems is developed throughout this work. Two finite difference schemes are analyzed: the classical Crank-Nicolson approach, and a high-order compact scheme. Solvers based on geometric multigrid, Fast Fourier Transform and Alternating Direction Implicit methods are compared. Finally, the efficiency of the considered solvers is tested for a linear Schrodinger problem, proving that the computational experiments are in good agreement with the theoretical predictions. In order to test the robustness of the MG solver two additional Schrodinger problems with a non-constant potential and nonlinear right-hand side are solved by the MG solver, since the efficiency of this solver depends on such data.eng
dc.format.extentp. 131-147
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyCurrent Contents / Physical, Chemical & Earth Sciences
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttp://www.math.ualberta.ca/ijnam/Volume-11-2014/No-1-14/2014-01-08.pdf
dc.subjectFM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes
dc.titleComparison of solvers for 2D Schrodinger problems
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references27
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionDepartamento de Matematica Aplicada, Universidad de Zaragoza (Spain)
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enFinite difference method
dc.subject.enSchrodinger problem
dc.subject.enMultigrid m ethod
dc.subject.enAlternating Direction Implicit method
dc.subject.enFast Fourier Transform method
dcterms.sourcetitleInternational Journal of Numerical Analysis & Modeling
dc.description.issueno.1
dc.description.volumeVol. 11
dc.publisher.nameWuhan University and Institute for Scientific Computing and Information
dc.publisher.cityWuhan
dc.identifier.elaba4019484


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą