Rodyti trumpą aprašą

dc.contributor.authorŽuraulis, Vidas
dc.contributor.authorSurblys, Vytenis
dc.contributor.authorŠabanovič, Eldar
dc.date.accessioned2023-09-18T19:38:41Z
dc.date.available2023-09-18T19:38:41Z
dc.date.issued2019
dc.identifier.issn1648-4142
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/141778
dc.description.abstractThis paper presents the technological measures currently being developed at institutes and vehicle research centres dealing with forefront road identification. In this case, road identification corresponds with the pavement irregularities and friction states which are evaluated by laser scanning and image analysis. Real-time adaptation, adaptation in advance and system external informing are stated as sequential generations of vehicle suspension and active braking systems where road identification is significantly important. Active and semi-active suspensions with their adaptation technologies for comfort and road holding characteristics are analysed. Also, an active braking system such as anti-lock braking system (ABS) and autonomous emergency braking (AEB) have been considered as very sensitive to the road friction state. Artificial intelligence methods of deep learning have been presented as a promising image analysis method for classification of 12 different road surface types. Concluding the achieved benefit of road identification for traffic safety improvement is presented with reference to analysed research reports and assumptions made after the initial evaluation.eng
dc.formatPDF
dc.format.extentp. 363-372
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyAcademic Search Complete
dc.relation.isreferencedbyICONDA
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyVINITI RAN
dc.relation.isreferencedbyProQuest Central
dc.relation.isreferencedbyDOAJ
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://journals.vgtu.lt/index.php/Transport/article/view/10372/8913
dc.source.urihttps://doi.org/10.3846/transport.2019.10372
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:37485759/datastreams/MAIN/content
dc.titleTechnological measures of forefront road identification for vehicle comfort and safety improvement
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsOpen Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/)
dcterms.references53
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyTransporto inžinerijos fakultetas / Faculty of Transport Engineering
dc.subject.researchfieldT 003 - Transporto inžinerija / Transport engineering
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.vgtuprioritizedfieldsTD0404 - Eismo saugos technologijos / Traffic safety technologies
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enroad identification
dc.subject.enroad irregularities
dc.subject.enlaser scanning
dc.subject.ensemi-active suspension
dc.subject.endamper
dc.subject.enimage analysis
dc.subject.enfriction state
dc.subject.endeep learning
dcterms.sourcetitleTransport
dc.description.issueiss. 3
dc.description.volumevol. 34
dc.publisher.nameVGTU Press
dc.publisher.cityVilnius
dc.identifier.doi000470992700008
dc.identifier.doi2-s2.0-85068168311
dc.identifier.doi10.3846/transport.2019.10372
dc.identifier.elaba37485759


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą