Show simple item record

dc.contributor.authorFasching, Gernot
dc.contributor.authorTamošiūnas, Vincas
dc.contributor.authorBenz, Alexander
dc.contributor.authorAndrews, Aaron Maxwell
dc.contributor.authorUnterrainer, Karl
dc.contributor.authorZobl, Reinhard
dc.contributor.authorRoch, Tomas
dc.contributor.authorSchrenk, Werner
dc.contributor.authorStrasser, Gottfried
dc.date.accessioned2023-09-18T19:57:47Z
dc.date.available2023-09-18T19:57:47Z
dc.date.issued2007
dc.identifier.issn0018-9197
dc.identifier.other(BIS)VGT02-000015802
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/145097
dc.description.abstractWe report on the emission characteristics of microcavity quantum-cascade lasers emitting in the terahertz frequency range based on circular-shaped microresonators. Strong mode confinement in the growth and in-plane directions are provided by a double-plasmon waveguide and due to the strong impedance mismatch between the gain material and air. This allows laser emission from devices with overall dimensions much smaller than the free-air emission wavelength ( 100 m). Hence, for the smallest microdisks we achieved a threshold current as low as 13.5 mA (350 A/cm2) in pulsed-mode operation at 5 K and stable single-mode emission up to 95 K in continuous-wave mode operation. We have observed dynamical frequency pulling of the resonator mode on the gigahertz scale, as a consequence of the gain shift due to the quantum-confined Stark effect. Thus, we were able to estimate the peak gain of the material to 27 cm 1. The smallest microcavities exhibited a strong dependence on the exact placement of the bond wire which resulted in single- as well as double-mode emission. Finite-difference time-domain simulations were performed in order to identify the modes of the recorded spectra. They confirm that most of the observed spectral features can be attributed to the lasing emission of whispering-gallery modes.eng
dc.formatPDF
dc.format.extentp. 687-697
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyIEEE Xplore
dc.source.urihttp://dx.doi.org/doi:10.1109/JQE.2007.900254
dc.titleSubwavelength microdisk and microring terahertz quantum-cascade lasers
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references48
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionViena University of Technology
dc.contributor.institutionVilniaus Gedimino technikos universitetas Puslaidininkių fizikos institutas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.ltLazeriai
dc.subject.ltMikrorezonatoriai
dc.subject.ltKvantiniai-kaskadiniai
dc.subject.ltDalinės bangos ilgis
dc.subject.ltTerahercai
dc.subject.enLaser
dc.subject.enMicrocavity
dc.subject.enQuantum-cascade
dc.subject.enSubwavelength
dc.subject.enTerahertz
dcterms.sourcetitleJournal of quantum electronics
dc.description.issueNo. 12
dc.description.volumeVol. 43
dc.publisher.nameIET
dc.publisher.cityStevenage
dc.identifier.doiLBT02-000026494
dc.identifier.doi000248562700021
dc.identifier.doi10.1109/JQE.2007.900254
dc.identifier.elaba3802777


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record