dc.contributor.author | Čiupaila, Regimantas | |
dc.contributor.author | Sapagovas, Mifodijus | |
dc.contributor.author | Štikonienė, Olga | |
dc.date.accessioned | 2023-09-18T20:15:36Z | |
dc.date.available | 2023-09-18T20:15:36Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1392-5113 | |
dc.identifier.other | (BIS)VUB02-000049781 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/148312 | |
dc.description.abstract | Two iterative methods are considered for the system of difference equations approximating two-dimensional nonlinear elliptic equation with the nonlocal integral condition. Motivation and possible applications of the problem present in the paper coincide with the small volume problems in hydrodynamics. The differential problem considered in the article is some generalization of the boundary value problem for minimal surface equation. | eng |
dc.format | PDF | |
dc.format.extent | p. 412-426 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Index Copernicus | |
dc.relation.isreferencedby | Zentralblatt MATH (zbMATH) | |
dc.relation.isreferencedby | Chemical abstracts | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:4870023/datastreams/MAIN/content | |
dc.title | Numerical solution of nonlinear elliptic equation with nonlocal condition | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 33 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.en | minimal surface equation | |
dc.subject.en | nonlocal boundary condition | |
dc.subject.en | finite-difference method | |
dc.subject.en | iterative method | |
dcterms.sourcetitle | Nonlinear analysis: modelling and control | |
dc.description.issue | no. 4 | |
dc.description.volume | vol. 18 | |
dc.publisher.name | Vilniaus universiteto leidykla | |
dc.publisher.city | Vilnius | |
dc.identifier.doi | MRU02-000016602 | |
dc.identifier.doi | 000330045500002 | |
dc.identifier.doi | 10.15388/NA.18.4.13970 | |
dc.identifier.elaba | 4870023 | |