Show simple item record

dc.contributor.authorČeponis, Dainius
dc.contributor.authorGoranin, Nikolaj
dc.date.accessioned2023-09-18T20:28:38Z
dc.date.available2023-09-18T20:28:38Z
dc.date.issued2020
dc.identifier.other(SCOPUS_ID)85083560195
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150138
dc.description.abstractIntrusion and malware detection tasks on a host level are a critical part of the overall information security infrastructure of a modern enterprise. While classical host-based intrusion detection systems (HIDS) and antivirus (AV) approaches are based on change monitoring of critical files and malware signatures, respectively, some recent research, utilizing relatively vanilla deep learning (DL) methods, has demonstrated promising anomaly-based detection results that already have practical applicability due low false positive rate (FPR). More complex DL methods typically provide better results in natural language processing and image recognition tasks. In this paper, we analyze applicability of more complex dual-flow DL methods, such as long short-term memory fully convolutional network (LSTM-FCN), gated recurrent unit (GRU)-FCN, and several others, for the task specified on the attack-caused Windows OS system calls traces dataset (AWSCTD) and compare it with vanilla single-flow convolutional neural network (CNN) models. The results obtained do not demonstrate any advantages of dual-flow models while processing univariate times series data and introducing unnecessary level of complexity, increasing training, and anomaly detection time, which is crucial in the intrusion containment process. On the other hand, the newly tested AWSCTD-CNN-static (S) single-flow model demonstrated three times better training and testing times, preserving the high detection accuracy.eng
dc.formatPDF
dc.format.extentp. 1-26
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyChemical abstracts
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyAGORA
dc.relation.isreferencedbyGenamics Journal Seek
dc.source.urihttps://doi.org/10.3390/app10072373
dc.titleInvestigation of dual-flow deep learning models LSTM-FCN and GRU-FCN efficiency against single-flow CNN models for the host-based intrusion and malware detection task on univariate times series data
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references95
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.departmentTaikomosios informatikos institutas / Institute of Applied Computer Science
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0101 - Informacijos ir informacinių technologijų sauga / Information and Information Technologies Security
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.endeep learning
dc.subject.enhost-based intrusion detection
dc.subject.enmachine learning
dc.subject.enmalware
dc.subject.ensystem calls
dcterms.sourcetitleApplied Sciences
dc.description.issueiss. 7
dc.description.volumevol. 10
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi2-s2.0-85083560195
dc.identifier.doi85083560195
dc.identifier.doi1
dc.identifier.doi000533356200172
dc.identifier.doi10.3390/app10072373
dc.identifier.elaba58128208


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record