dc.contributor.author | Ramanauskas, Regimantas | |
dc.contributor.author | Kaklauskas, Gintaris | |
dc.contributor.author | Sokolov, Aleksandr | |
dc.date.accessioned | 2023-09-18T20:29:35Z | |
dc.date.available | 2023-09-18T20:29:35Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1537-6494 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/150377 | |
dc.description.abstract | The paper presents a comparison of the novel strain compliance concept, proposed for predicting the crack spacing of reinforced concrete structures with neural network predictions. The concept represents an alternative way to accurately analyze the cracking behavior of reinforced concrete elements while maintaining compatibility of deformation behavior and ensuring mechanical soundness. A multiple run and surrogate data based approach was adopted to train and calibrate an artificial neural network for primary crack spacing prediction. The findings substantiate the experimental primary crack spacing data and reveal the performance of the strain compliance approach to be similar to the trained neural network. | eng |
dc.format | PDF | |
dc.format.extent | p. 53-69 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | CSA Metals Abstracts | |
dc.relation.isreferencedby | CSA- Aluminum Industry Abstracts | |
dc.source.uri | https://www.tandfonline.com/doi/pdf/10.1080/15376494.2020.1751352 | |
dc.source.uri | https://doi.org/10.1080/15376494.2020.1751352 | |
dc.title | Estimating the primary crack spacing of reinforced concrete structures: Predictions by neural network versus the innovative strain compliance approach | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 66 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
dc.contributor.department | Statinių ir tiltų konstrukcijų institutas / Institute of Building and Bridge Structures | |
dc.subject.researchfield | T 002 - Statybos inžinerija / Construction and engineering | |
dc.subject.vgtuprioritizedfields | SD0101 - Pažangios statinių konstrukcijos / Smart building structures | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | cracking behavior | |
dc.subject.en | crack spacing | |
dc.subject.en | neural network | |
dc.subject.en | RC beam | |
dc.subject.en | reinforced concrete | |
dc.subject.en | serviceability analysis | |
dc.subject.en | strain compliance | |
dc.subject.en | stress transfer | |
dcterms.sourcetitle | Mechanics of advanced materials and structures | |
dc.description.issue | iss. 1 | |
dc.description.volume | vol. 29 | |
dc.publisher.name | Taylor & Francis | |
dc.publisher.city | Philadelphia | |
dc.identifier.doi | 000527612700001 | |
dc.identifier.doi | 10.1080/15376494.2020.1751352 | |
dc.identifier.elaba | 64123039 | |