Rodyti trumpą aprašą

dc.contributor.authorAbromavičius, Vytautas
dc.contributor.authorPlonis, Darius
dc.contributor.authorTarasevičius, Deividas
dc.contributor.authorSerackis, Artūras
dc.date.accessioned2023-09-18T20:29:54Z
dc.date.available2023-09-18T20:29:54Z
dc.date.issued2020
dc.identifier.issn2079-9292
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150434
dc.description.abstractThe presented research faces the problem of early detection of sepsis for patients in the Intensive Care Unit. The PhysioNet/Computing in Cardiology Challenge 2019 facilitated the development of automated, open-source algorithms for the early detection of sepsis from clinical data. A labeled clinical records dataset for training and verification of the algorithms was provided by the challenge organizers. However, a relatively small number of records with sepsis, supported by Sepsis-3 clinical criteria, led to highly unbalanced dataset (only 2% records with sepsis label). A high number of unbalanced data records is a great challenge for machine learning model training and is not suitable for training classical classifiers. To address these issues, a method taking into the account the amount of time the patients spent in the intensive care unit (ICU) was proposed. The proposed method uses two separate ensemble models, one trained on patient records under 56 h in the ICU, and another for patients who stayed longer than 56 h. A solution including feature selection and weighting based training on imbalanced data was proposed in this paper. In addition, several performance metrics were investigated. Results show, that for successful prediction, a particular model having few or more predictors based on the length of stay in the Intensive Care Unit should be applied.eng
dc.formatPDF
dc.format.extentp. 1-14
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyGenamics Journal Seek
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyChemical abstracts
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2079-9292/9/7/1133
dc.source.urihttps://doi.org/10.3390/electronics9071133
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:65388793/datastreams/MAIN/content
dc.titleTwo-stage monitoring of patients in intensive care unit for sepsis prediction using non-overfitted machine learning models
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references42
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL105 - Sveikatos technologijos ir biotechnologijos / Health technologies and biotechnologies
dc.subject.enearly detection
dc.subject.ensepsis
dc.subject.enevaluation metrics
dc.subject.enmachine learning
dc.subject.enmedical informatics
dc.subject.enfeature extraction
dc.subject.enphysionet challenge
dcterms.sourcetitleElectronics
dc.description.issueiss. 7
dc.description.volumevol. 9
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000558271100001
dc.identifier.doi10.3390/electronics9071133
dc.identifier.elaba65388793


Šio įrašo failai

Thumbnail
Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą