Show simple item record

dc.contributor.authorMaknickienė, Nijolė
dc.contributor.authorStankevičienė, Jelena
dc.contributor.authorMaknickas, Algirdas
dc.date.accessioned2023-09-18T20:33:52Z
dc.date.available2023-09-18T20:33:52Z
dc.date.issued2020
dc.identifier.issn1582-6163
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150821
dc.description.abstractFinancial markets are an important mechanism for allocating funds to the economy. Traders in finance markets use different strategies to increase their probability of success, and artificial intelligence is already often integrated into the investor support system. The purpose of this article is to compare the possibilities of different trading strategies to detect and predict exchange rate changes. Our model, based on an Evolino ensemble, provides two histograms based on high and low data. Probability estimation, the rejection of unlikely values, is the basis of these strategies, in which two known indicators are compared with strategies based on an Evolino ensemble prediction. Bollinger bands and Ichimoku Kinko Hyo indicators were selected because their lines determine the extreme points of fluctuation regarding exchange rates. Our findings indicate that high and low distributions received by an Evolino ensemble allow the investor to increase the probability of success and can be successfully used to robotize trading in the currency market or to develop new fintech services for investors.eng
dc.formatPDF
dc.format.extentp. 134-148
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbySocial Sciences Citation Index (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyEconLit
dc.relation.isreferencedbyRePec
dc.relation.isreferencedbyIDEAS
dc.rightsLaisvai prieinamas internete
dc.source.urihttp://www.ipe.ro/rjef/rjef3_20/rjef3_2020p134-148.pdf
dc.source.urihttp://www.ipe.ro/rjef.htm
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:71465037/datastreams/MAIN/content
dc.titleComparison of forex market forecasting tools based on Evolino ensemble and technical analysis indicators
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references49
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.contributor.departmentMechanikos mokslo institutas / Institute of Mechanical Science
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionJ01 - Ekonomika / Economics
dc.subject.studydirectionL03 - Finansai / Finance
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsEV02 - Aukštos pridėtinės vertės ekonomika / High Value-Added Economy
dc.subject.ltspecializationsL103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society
dc.subject.enBollinger bands
dc.subject.enIchimoku Kinko Hyo
dc.subject.enEvolino, prediction
dc.subject.enextreme values
dc.subject.enhigh-low strategy
dcterms.sourcetitleRomanian journal of economic forecasting
dc.description.issueiss. 3
dc.description.volumevol. 23
dc.publisher.nameInstitute for Economic Forecasting
dc.publisher.cityBucharest
dc.identifier.doi000577521800008
dc.identifier.elaba71465037


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record