Show simple item record

dc.contributor.authorGradauskas, Jonas
dc.contributor.authorAšmontas, Steponas
dc.contributor.authorSužiedėlis, Algirdas
dc.contributor.authorŠilėnas, Aldis
dc.contributor.authorVaičikauskas, Viktoras
dc.contributor.authorČerškus, Aurimas
dc.contributor.authorŠirmulis, Edmundas
dc.contributor.authorŽalys, Ovidijus Alfonsas
dc.contributor.authorMasalskyi, Oleksandr
dc.date.accessioned2023-09-18T20:34:09Z
dc.date.available2023-09-18T20:34:09Z
dc.date.issued2020
dc.identifier.issn2076-3417
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150908
dc.description.abstractIn the present work we reveal the existence of the hot carrier photovoltage induced across a p–n junction in addition to the classical carrier generation-induced and thermalization-caused photovoltages. On the basis of the solution of the differential equation of the first-order linear time-invariant system, we propose a model enabling to disclose the pure value of each photovoltage component. The hot carrier photovoltage is fast since it is determined by the free carrier energy relaxation time (which is of the order of 10−12 s), while the thermal one, being conditioned by the junction temperature change, is relatively slow; and both of them have a sign opposite to that of the electron-hole pair generation-induced component. Simultaneous coexistence of the components is evidenced experimentally in GaAs p–n junction exposed to pulsed 1.06 μm laser light. The work is remarkable in two ways: first, it shows that creation of conditions unfavorable for the rise of hot carrier photovoltage might improve the efficiency of a single junction solar cell, and second, it should inspire the photovoltaic society to revise the Shockley–Queisser limit by taking into account the damaging impact of the hot carrier photovoltage.eng
dc.formatPDF
dc.format.extentp. 1-8
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.3390/app10217483
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:73367714/datastreams/MAIN/content
dc.titleInfluence of hot carrier and thermal components on photovoltage formation across the p–n junction
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references27
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionValstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Vilniaus Gedimino technikos universitetas
dc.contributor.institutionValstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.subject.researchfieldN 002 - Fizika / Physics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL102 - Energetika ir tvari aplinka / Energy and a sustainable environment
dc.subject.enhot carriers
dc.subject.enphotovoltage
dc.subject.enp–n junction
dc.subject.enGaAs
dc.subject.ensolar cell
dcterms.sourcetitleApplied sciences
dc.description.issueiss. 21
dc.description.volumevol. 10
dc.publisher.nameMDPI AG
dc.publisher.cityBasel
dc.identifier.doi000589063400001
dc.identifier.doi10.3390/app10217483
dc.identifier.elaba73367714


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record