Show simple item record

dc.contributor.authorBalali, Amirhossein
dc.contributor.authorValipour, Alireza
dc.contributor.authorAntuchevičienė, Jurgita
dc.contributor.authorŠaparauskas, Jonas
dc.date.accessioned2023-09-18T20:34:11Z
dc.date.available2023-09-18T20:34:11Z
dc.date.issued2020
dc.identifier.issn2073-8994
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150914
dc.description.abstractThe cost, time and scope of a construction project are key parameters for its success. Thus, predicting these indices is indispensable. Correct and accurate prediction of cost throughout the progress of a project gives project managers the chance to identify projects that need revision in their schedules in order to result in the maximum benefit. The aim of this study is to minimize the shortcomings of the Earned Value Management (EVM) method using an Artificial Neural Network (ANN) and multiple regression analysis in order to predict project cost indices more precisely. A total of 50 road construction projects in Fars Province, Iran, were selected for analysis in this research. An ANN model was used to predict the projects’ cost performance indices, thereby creating a more accurate symmetry between the predicted and actual cost by considering factors that influence project success. The input data of the ANN model were analysed in MATLAB software. A multiple regression model was also used as another analytical tool to validate the outcome of the ANN. The results showed that the ANN model resulted in a lower Mean Squared Error (MSE) and a greater correlation coefficient than both the traditional EVM model and the multiple regression model.eng
dc.formatPDF
dc.format.extentp. 1-17
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyChemical abstracts
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyDOAJ
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2073-8994/12/10/1745
dc.source.urihttps://doi.org/10.3390/sym12101745
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:72807642/datastreams/MAIN/content
dc.subjectJ800 - Statybų technologijos / Building technology
dc.titleImproving the results of the earned value management technique using artificial neural networks in construction projects
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references65
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionIslamic Azad University
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.vgtuprioritizedfieldsSD0404 - Statinių skaitmeninis modeliavimas ir tvarus gyvavimo ciklas / BIM and Sustainable lifecycle of the structures
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.ensymmetry
dc.subject.enearned value management (EVM)
dc.subject.enartificial neural networks (ANNs)
dc.subject.enmultiple regression analysis
dc.subject.enroad industry
dcterms.sourcetitleSymmetry
dc.description.issueiss. 10
dc.description.volumevol. 12
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000585122200001
dc.identifier.doi10.3390/sym12101745
dc.identifier.elaba72807642


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record