Show simple item record

dc.contributor.authorRazavi Hajiagha, Seyed Hossein
dc.contributor.authorDaneshvar, Maryam
dc.contributor.authorAntuchevičienė, Jurgita
dc.date.accessioned2023-09-18T20:34:16Z
dc.date.available2023-09-18T20:34:16Z
dc.date.issued2021
dc.identifier.issn1432-7643
dc.identifier.other(SCOPUS_ID)85088657645
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150936
dc.description.abstractInventory classification is a fundamental issue in the development of inventory policy that assigns each inventory item to several classes with different levels of importance. This classification is the main determinant of a suitable inventory control policy of inventory classes. Therefore, a great deal of research is done on solving this problem. Usually, the problem of inventory classification is considered in a multi-criteria and uncertain environment. The proposed method in this paper inspired by the notion of heterogeneous decision-making problems in which decision-makers deal with different types of data. To this aim, a mathematical modeling-based approach is proposed considering different types of uncertainty in classification information. Demand information is considered to be stochastic due to its time-varying nature and cost information is considered to be fuzzy due to its cognitive ambiguity. A hybrid algorithm based on chance-constrained and possibilistic programming is proposed to solve the problems. Considering the stochastic nature of demand information, solving the proposed model using the hybrid algorithm, the classification of items to three classes of extremely important, class A, moderately important, class B, and relatively unimportant, class C, items are determined along with a minimum inventory level required to deal with the stochasticity of demands information. The proposed approach is applied to a case study of classifying 51 inventory items. The obtained results assigned 22%, 39%, and 39% of the items to A, B, and C classes, respectively.eng
dc.formatPDF
dc.format.extentp. 1065-1083
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://link.springer.com/article/10.1007/s00500-020-05204-z
dc.source.urihttps://doi.org/10.1007/s00500-020-05204-z
dc.subjectN900 - Verslas ir vadyba / Business and administrative studies
dc.titleA hybrid fuzzy-stochastic multi-criteria ABC inventory classification using possibilistic chance-constrained programming
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references65
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionKhatam University
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enmulti-criteria inventory classification
dc.subject.enchance-constrained programming
dc.subject.enpossibilistic programming
dcterms.sourcetitleSoft computing
dc.description.issueiss. 2
dc.description.volumevol. 25
dc.publisher.nameSpringer
dc.publisher.cityNew York
dc.identifier.doi2-s2.0-85088657645
dc.identifier.doi85088657645
dc.identifier.doi1
dc.identifier.doi000553592100004
dc.identifier.doi10.1007/s00500-020-05204-z
dc.identifier.elaba73771381


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record