Show simple item record

dc.contributor.authorSledevič, Tomyslav
dc.contributor.authorSerackis, Artūras
dc.date.accessioned2023-09-18T20:34:25Z
dc.date.available2023-09-18T20:34:25Z
dc.date.issued2020
dc.identifier.issn2079-9292
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150973
dc.description.abstractThe convolutional neural networks (CNNs) are a computation and memory demanding class of deep neural networks. The field-programmable gate arrays (FPGAs) are often used to accelerate the networks deployed in embedded platforms due to the high computational complexity of CNNs. In most cases, the CNNs are trained with existing deep learning frameworks and then mapped to FPGAs with specialized toolflows. In this paper, we propose a CNN core architecture called mNet2FPGA that places a trained CNN on a SoC FPGA. The processing system (PS) is responsible for convolution and fully connected core configuration according to the list of prescheduled instructions. The programmable logic holds cores of convolution and fully connected layers. The hardware architecture is based on the advanced extensible interface (AXI) stream processing with simultaneous bidirectional transfers between RAM and the CNN core. The core was tested on a cost-optimized Z-7020 FPGA with 16-bit fixed-point VGG networks. The kernel binarization and merging with the batch normalization layer were applied to reduce the number of DSPs in the multi-channel convolutional core. The convolutional core processes eight input feature maps at once and generates eight output channels of the same size and composition at 50 MHz. The core of the fully connected (FC) layer works at 100 MHz with up to 4096 neurons per layer. In a current version of the CNN core, the size of the convolutional kernel is fixed to 3×3. The estimated average performance is 8.6 GOPS for VGG13 and near 8.4 GOPS for VGG16/19 networks.eng
dc.formatPDF
dc.format.extentp. 1-21
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyGenamics Journal Seek
dc.source.urihttps://www.mdpi.com/2079-9292/9/11/1823
dc.subjectH600 - Elektronikos ir elektros inžinerija / Electronic and electrical engineering
dc.titlemNet2FPGA: a design flow for mapping a fixed-point CNN to Zynq SoC FPGA
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references25
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0202 - Išmaniosios signalų apdorojimo ir ryšių technologijos / Smart Signal Processing and Telecommunication Technologies
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enconvolutional neural network (CNN)
dc.subject.endesign flow
dc.subject.enfield-programmable gate array (FPGA)
dc.subject.enhardware-software co-design
dcterms.sourcetitleElectronics
dc.description.issueiss. 11
dc.description.volumevol. 9
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000592777500001
dc.identifier.doi10.3390/electronics9111823
dc.identifier.elaba74110187


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record