Rodyti trumpą aprašą

dc.contributor.authorPileckas, Konstantinas
dc.contributor.authorČiegis, Raimondas
dc.date.accessioned2023-09-18T20:34:25Z
dc.date.available2023-09-18T20:34:25Z
dc.date.issued2020
dc.identifier.issn0044-2275
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150975
dc.description.abstractExistence and uniqueness of a solution to the nonstationary Navier–Stokes equations having a prescribed flow rate (flux) in the infinite cylinder Π={x=(x′,xn)∈Rn:x′∈σ⊂Rn−1,−∞<xn<∞,n=2,3} are proved. It is assumed that the flow rate F∈L2(0,T) and the initial data u0=(0,…,0,u0n)∈L2(σ). The nonstationary Poiseuille solution has the form u(x,t)=(0,…,0,U(x′,t)),p(x,t)=−q(t)xn+p0(t), where (U(x′,t),q(t)) is a solution of an inverse problem for the heat equation with a specific over-determination condition.eng
dc.formatPDF
dc.format.extentp. 1-17
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbySpringerLink
dc.relation.isreferencedbyProQuest Central
dc.relation.isreferencedbyEI Compendex Plus
dc.relation.isreferencedbyZentralblatt MATH (zbMATH)
dc.relation.isreferencedbyMathematical Reviews/MathSciNet
dc.source.urihttps://link.springer.com/article/10.1007/s00033-020-01422-5
dc.titleExistence of nonstationary Poiseuille type solutions under minimal regularity assumptions
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references29
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.studydirectionA01 - Matematika / Mathematics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enNonstationary Navier--Stokes equations
dc.subject.encylindrical domain
dc.subject.ennonstationary Poiseuille type solution
dc.subject.eninverse problem
dc.subject.enheat equation
dc.subject.enminimal regularity
dcterms.sourcetitleZeitschrift für angewandte Mathematik und Physik (ZAMP) = Journal of applied mathematics and physics = Journal de Mathématiques et de Physique
dc.description.issueiss. 6
dc.description.volumevol. 71
dc.publisher.nameSpringer
dc.publisher.cityCham
dc.identifier.doi000588324200001
dc.identifier.doi10.1007/s00033-020-01422-5
dc.identifier.elaba74191923


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą