Show simple item record

dc.contributor.authorKaklauskas, Artūras
dc.contributor.authorAbraham, Ajith
dc.contributor.authorMilevičius, Virginijus
dc.date.accessioned2023-09-18T20:34:56Z
dc.date.available2023-09-18T20:34:56Z
dc.date.issued2021
dc.identifier.issn0952-1976
dc.identifier.other(SCOPUS_ID)85097151267
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151062
dc.description.abstractA large-scale analysis of diurnal and seasonal mood cycles in global social networks has been performed successfully over the past ten years using Twitter, Facebook and blogs. This study describes the application of remote biometric technologies to such investigations on a large scale for the first time. The performance of this research was under real conditions producing results that conform to natural human diurnal and seasonal rhythm patterns. The derived results of this, 208 million data research on diurnal emotions, valence and facial temperature correlate with the results of an analogical Twitter research performed worldwide (UK, Australia, US, Canada, Latin America, North America, Europe, Oceania, and Asia). It is established that diurnal valence and sadness were correlated with one another both prior to and during the period of the coronavirus crisis, and that there are statistically significant relationships between the values of diurnal happiness, sadness, valence and facial temperature and the numbers of their data. Results from the simulation and formal comparisons appear in this article. Additionally the analyses on the COVID-19 screening, diagnosing, monitoring and analyzing by applying biometric and AI technologies are described in Housing COVID-19 Video Neuroanalytics.eng
dc.formatPDF
dc.format.extentp. 1-19
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyGale's Academic OneFile
dc.relation.isreferencedbyPubMed
dc.relation.isreferencedbySocial Sciences Citation Index (Web of Science)
dc.source.urihttps://doi.org/10.1016/j.engappai.2020.104122
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0952197620303596
dc.subjectJ900 - Technologijos / Technologies
dc.titleDiurnal emotions, valence and the coronavirus lockdown analysis in public spaces
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references92
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionScientific Network for Innovation and Research Excellence
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.endiurnal emotions
dc.subject.envalence and facial temperature
dc.subject.enCOVID-19
dc.subject.enpublic spaces
dc.subject.enremote biometric technologies
dc.subject.enlarge-scale data analysis
dc.subject.enworldwide comparisons
dcterms.sourcetitleEngineering Applications of Artificial Intelligence
dc.description.volumevol. 98
dc.publisher.nameElsevier
dc.publisher.cityKidlington, Oxford
dc.identifier.doi2-s2.0-85097151267
dc.identifier.doiS0952197620303596
dc.identifier.doi85097151267
dc.identifier.doi0
dc.identifier.doi000606752400001
dc.identifier.doi10.1016/j.engappai.2020.104122
dc.identifier.elaba77674829


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record