Show simple item record

dc.contributor.authorZlotnik, Alexander
dc.contributor.authorČiegis, Raimondas
dc.date.accessioned2023-09-18T20:35:49Z
dc.date.available2023-09-18T20:35:49Z
dc.date.issued2021
dc.identifier.issn0893-9659
dc.identifier.other(SCOPUS_ID)85098460065
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151199
dc.description.abstractWe study necessary conditions for stability of a Numerov-type compact higher-order finite-difference scheme for the 1D homogeneous wave equation in the case of non-uniform spatial meshes. We first show that the uniform in time stability cannot be valid in any spatial norm provided that the complex eigenvalues appear in the associated mesh eigenvalue problem. Moreover, we prove that then the solution norm grows exponentially in time making the scheme strongly non-dissipative and therefore impractical. Numerical results confirm this conclusion. In addition, for some sequences of refining spatial meshes, an excessively strong condition between steps in time and space is necessary (even for the non-uniform in time stability) which is familiar for explicit schemes in the parabolic case.eng
dc.formatPDF
dc.format.extentp. 1181-1209
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.sciencedirect.com/science/article/abs/pii/S0893965920304882
dc.source.urihttps://doi.org/10.1016/j.aml.2020.106949
dc.titleA compact higher-order finite-difference scheme for the wave equation can be strongly non-dissipative on non-uniform meshes
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references10
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionNational Research University Higher School of Economics
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enwave equation
dc.subject.encompact higher-order finite-difference scheme
dc.subject.ennon-uniform mesh
dc.subject.enstability
dcterms.sourcetitleApplied mathematics letters
dc.description.volumevol. 115
dc.publisher.nameElsevier
dc.publisher.cityOxford
dc.identifier.doi2-s2.0-85098460065
dc.identifier.doiS0893965920304882
dc.identifier.doi85098460065
dc.identifier.doi2
dc.identifier.doi000609447700009
dc.identifier.doi10.1016/j.aml.2020.106949
dc.identifier.elaba80192661


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record