dc.contributor.author | Zlotnik, Alexander | |
dc.contributor.author | Čiegis, Raimondas | |
dc.date.accessioned | 2023-09-18T20:35:49Z | |
dc.date.available | 2023-09-18T20:35:49Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0893-9659 | |
dc.identifier.other | (SCOPUS_ID)85098460065 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151199 | |
dc.description.abstract | We study necessary conditions for stability of a Numerov-type compact higher-order finite-difference scheme for the 1D homogeneous wave equation in the case of non-uniform spatial meshes. We first show that the uniform in time stability cannot be valid in any spatial norm provided that the complex eigenvalues appear in the associated mesh eigenvalue problem. Moreover, we prove that then the solution norm grows exponentially in time making the scheme strongly non-dissipative and therefore impractical. Numerical results confirm this conclusion. In addition, for some sequences of refining spatial meshes, an excessively strong condition between steps in time and space is necessary (even for the non-uniform in time stability) which is familiar for explicit schemes in the parabolic case. | eng |
dc.format | PDF | |
dc.format.extent | p. 1181-1209 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.source.uri | https://www.sciencedirect.com/science/article/abs/pii/S0893965920304882 | |
dc.source.uri | https://doi.org/10.1016/j.aml.2020.106949 | |
dc.title | A compact higher-order finite-difference scheme for the wave equation can be strongly non-dissipative on non-uniform meshes | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 10 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | National Research University Higher School of Economics | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.vgtuprioritizedfields | FM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | wave equation | |
dc.subject.en | compact higher-order finite-difference scheme | |
dc.subject.en | non-uniform mesh | |
dc.subject.en | stability | |
dcterms.sourcetitle | Applied mathematics letters | |
dc.description.volume | vol. 115 | |
dc.publisher.name | Elsevier | |
dc.publisher.city | Oxford | |
dc.identifier.doi | 2-s2.0-85098460065 | |
dc.identifier.doi | S0893965920304882 | |
dc.identifier.doi | 85098460065 | |
dc.identifier.doi | 2 | |
dc.identifier.doi | 000609447700009 | |
dc.identifier.doi | 10.1016/j.aml.2020.106949 | |
dc.identifier.elaba | 80192661 | |