dc.contributor.author | Gurauskis, Donatas | |
dc.contributor.author | Kilikevičius, Artūras | |
dc.contributor.author | Kasparaitis, Albinas | |
dc.date.accessioned | 2023-09-18T20:35:54Z | |
dc.date.available | 2023-09-18T20:35:54Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151207 | |
dc.description.abstract | Linear displacement measuring systems, like optical encoders, are widely used in various precise positioning applications to form a full closed-loop control system. Thus, the performance of the machine and the quality of its technological process are highly dependent on the accuracy of the linear encoder used. Thermoelastic deformation caused by a various thermal sources and the changing ambient temperature are important factors that introduce errors in an encoder reading. This work presents an experimental realization of the real-time geometric and thermal error compensation of the optical linear encoder. The implemented compensation model is based on the approximation of the tested encoder error by a simple parametric function and calculation of a linear nature error component according to an ambient temperature variation. The calculation of a two-dimensional compensation function and the real-time correction of the investigated linear encoder position readings are realized by using a field programmable gate array (FPGA) computing platform. The results of the performed experimental research verified that the final positioning error could be reduced up to 98%. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-16 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | MEDLINE | |
dc.relation.isreferencedby | EI Compendex Plus | |
dc.source.uri | https://www.mdpi.com/1424-8220/21/2/360 | |
dc.title | Thermal and geometric error compensation approach for an optical linear encoder | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access articledistributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 46 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Mechanikos fakultetas / Faculty of Mechanics | |
dc.subject.researchfield | T 009 - Mechanikos inžinerija / Mechanical enginering | |
dc.subject.researchfield | T 010 - Matavimų inžinerija / Measurement engineering | |
dc.subject.vgtuprioritizedfields | MC0101 - Mechatroninės gamybos sistemos Pramonė 4.0 platformoje / Mechatronic for Industry 4.0 Production System | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | measuring scale | |
dc.subject.en | thermoelastic deformation | |
dc.subject.en | coefficient of thermal expansion | |
dcterms.sourcetitle | Sensors: Special issue: Advances in sensors and sensing for technical condition assessment and NDT | |
dc.description.issue | iss. 2 | |
dc.description.volume | vol. 21 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 000611714600001 | |
dc.identifier.doi | 10.3390/s21020360 | |
dc.identifier.elaba | 80592460 | |