Rodyti trumpą aprašą

dc.contributor.authorMiliauskaitė, Jolanta
dc.contributor.authorKalibatienė, Diana
dc.date.accessioned2023-09-18T20:36:13Z
dc.date.available2023-09-18T20:36:13Z
dc.date.issued2020
dc.identifier.issn2255-8942
dc.identifier.other(SCOPUS_ID)85099211914
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151251
dc.description.abstractNowadays, data-driven fuzzy inference systems (FIS) have become popular to solve different vague, imprecise, and uncertain problems in various application domains. However, plenty of authors have identified different challenges and issues of FIS development because of its complexity that also influences FIS quality attributes. Still, there is no common agreement on a systematic view of these complexity issues and their relationship to quality attributes. In this paper, we present a systematic literature review of 1340 scientific papers published between 1991 and 2019 on the topic of FIS complexity issues. The obtained results were systematized and classified according to the complexity issues as computational complexity, complexity of fuzzy rules, complexity of membership functions, data complexity, and knowledge representation complexity. Further, the current research was extended by extracting FIS quality attributes related to the found complexity issues. The key, but not all, FIS quality attributes found are performance, accuracy, efficiency, and interpretability.eng
dc.formatPDF
dc.format.extentp. 572-596
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyEmerging Sources Citation Index (Web of Science)
dc.source.urihttps://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Contents/8_4_08_Miliauskaite.pdf
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099211914&origin=inward
dc.titleComplexity in data-driven fuzzy inference systems: Survey, classification and perspective
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references138
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enmembership function
dc.subject.enfuzzy rule
dc.subject.enfuzzy inference system
dc.subject.enFIS
dc.subject.enissue
dc.subject.encomplexity
dc.subject.enquality attribute
dcterms.sourcetitleBaltic journal of modern computing
dc.description.issueiss. 4
dc.description.volumevol 8
dc.publisher.nameUniversity of Latvia
dc.publisher.cityRiga
dc.identifier.doi2-s2.0-85099211914
dc.identifier.doi85099211914
dc.identifier.doi1
dc.identifier.doi000601605000010
dc.identifier.doi10.22364/BJMC.2020.8.4.08
dc.identifier.elaba81633197


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą