Rodyti trumpą aprašą

dc.contributor.authorRenigier‑Biłozor, Małgorzata
dc.contributor.authorChmielewska, Aneta
dc.contributor.authorWalacik, Marek
dc.contributor.authorJanowski, Artur
dc.contributor.authorLepkova, Natalija
dc.date.accessioned2023-09-18T20:37:16Z
dc.date.available2023-09-18T20:37:16Z
dc.date.issued2021
dc.identifier.issn1566-4910
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151399
dc.description.abstractEvery real estate investment decision making, because of the high capital-intensive character of properties, requires careful analysis of information. Availability of the information, market specifcity and unpredictable or sudden changes on it cause that all real estate investments are subject to considerable risk and uncertainty. This specifcity causes that, one can never be sure, that the collected set of information is complete though reliable for decision inference. The process of property market information collection, from numerical point of view is infnite since the information can be continuously supplemented or clarifed. That is the reason for alternative to commonly (classically) used methods search that are efective in the selection of closest solutions optimal for multidimensional real functions, taking into account the global maximum. The paper attempts to decrease the impact of the factors that cause uncertainty on the quality of real estate investment decisions through the tools based on the simulation of the process of natural selection and biological evolution application proposal. The aim of the study is to analyse the potential of the methodology based on genetic algorithms (GA) as part of the automated valuation models component in the uncertainty conditions and support investment decisions on the real estate market. The developed hybrid model (based on genetic algorithm and Hellwig’s method compound) allows to select properties adequate to the adopted assumptions, i.e. individuals best suited to the environment. The tool can be used by real estate investment advisors and potential investors.eng
dc.formatPDF
dc.format.extentp. 1629-1670
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbySocial Sciences Citation Index (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbySpringerLink
dc.relation.isreferencedbyProQuest Central
dc.relation.isreferencedbyGEOBASE
dc.relation.isreferencedbyAGRICOLA
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://link.springer.com/article/10.1007/s10901-020-09815-8#Bib1
dc.source.urihttps://doi.org/10.1007/s10901-020-09815-8
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:82215217/datastreams/MAIN/content
dc.titleGenetic algorithm application for real estate market analysis in the uncertainty conditions
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references129
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionUniversity of Warmia and Mazury in Olsztyn
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.studydirectionE05 - Statybos inžinerija / Civil engineering
dc.subject.vgtuprioritizedfieldsSD0404 - Statinių skaitmeninis modeliavimas ir tvarus gyvavimo ciklas / BIM and Sustainable lifecycle of the structures
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enreal estate market
dc.subject.engenetic algorithm (GA)
dc.subject.enuncertainty
dc.subject.endecision support solutions
dc.subject.enautomated valuation model component
dcterms.sourcetitleJournal of housing and the built environment
dc.description.issueiss. 4
dc.description.volumevol. 36
dc.publisher.nameSpringer
dc.publisher.cityDordrecht
dc.identifier.doi000609960600001
dc.identifier.doi10.1007/s10901-020-09815-8
dc.identifier.elaba82215217


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą