Show simple item record

dc.contributor.authorVinogradova-Zinkevič, Irina
dc.contributor.authorPodvezko, Valentinas
dc.contributor.authorZavadskas, Edmundas Kazimieras
dc.date.accessioned2023-09-18T20:42:38Z
dc.date.available2023-09-18T20:42:38Z
dc.date.issued2021
dc.identifier.issn2073-8994
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151789
dc.description.abstractMathematical models describing physical, technical, economic, and other processes can be used to analyze these processes and predict their results, providing that these models are stable and their results are stable relative to the model parameters used. Small changes in the values of the model parameters correspond to small changes in the results. Multicriteria decision-making models need to check the results’ stability against the models’ main components: the values of the criteria weights and the elements of the decision matrix. In this article, we study the stability of models associated with the calculation of criteria weights. For the analysis, the most commonly used models are taken—the Analytic Hierarchy Process (AHP) method and the fuzzy Analytic Hierarchy Process (FAHP) method, in which fuzzy numbers are used under conditions of data uncertainty. Both mathematically well-based methods verify the consistency of the expert evaluations. The method of statistical simulation (Monte Carlo) is the basis for studying the results’ stability. The study checks the experts’ provided evaluations’ consistency, calculates the criteria weights, and evaluates their relative errors after a slight change in the estimates of the pairwise comparisons of the criteria provided by the experts. The matrix of comparisons of the FAHP method is constructed based on the entire expert group’s assessments. It estimates the boundaries of variance in the fuzzy criteria weights. This paper estimates the stability of the criteria’ weights associated with the mathematical methods themselves and the experts’ estimates. The results are useful to study the stability of specific MCDM methods when ranking alternatives.eng
dc.formatPDF
dc.format.extentp. 1-25
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyGale's Academic OneFile
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.3390/sym13030479
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:87470061/datastreams/MAIN/content
dc.titleComparative assessment of the stability of AHP and FAHP methods
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references52
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionB01 - Informatika / Informatics
dc.subject.studydirectionA01 - Matematika / Mathematics
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enAnalytic Hierarchy Process
dc.subject.enfuzzy Analytic Hierarchy Process
dc.subject.ensymmetric and asymmetric fuzzy numbers
dc.subject.enuncertainty
dc.subject.enstability
dcterms.sourcetitleSymmetry
dc.description.issueiss. 3
dc.description.volumevol. 13
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000634223700001
dc.identifier.doi10.3390/sym13030479
dc.identifier.elaba87470061


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record