Show simple item record

dc.contributor.authorKrapavickaitė, Danutė
dc.contributor.authorRudys, Tomas
dc.date.accessioned2023-09-18T20:42:55Z
dc.date.available2023-09-18T20:42:55Z
dc.date.issued2015
dc.identifier.issn0363-1672
dc.identifier.other(BIS)VGT02-000030438
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151916
dc.description.abstractOne of the main research trends in contemporary survey sampling and the need to improve the accuracy of the Lithuanian Labor force survey estimates in small geographic areas have stimulated this study. The aim of the paper is to compare area level models and estimation methods for the fraction of the unemployed using simulation based on the Lithuanian Labor Force Survey data. The Fay–Herriot area level model, estimated by empirical best linear unbiased prediction, and the unmatched logit-normal-normal and binomial- logit-normal models, estimated using hierarchical Bayes analysis, are applied. Bayesian imputation is used for areas without sample data. We suggest the composition of some model elements.eng
dc.formatPDF
dc.format.extentp. 243-254
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyGale's Academic OneFile
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyZentralblatt MATH (zbMATH)
dc.relation.isreferencedbySpringerLink
dc.source.urihttps://doi.org/10.1007/s10986-015-9277-9
dc.subjectFM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes
dc.titleSmall area estimates for the fraction of the unemployed
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references25
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enFinite population
dc.subject.enSmall area estimation
dc.subject.enBest linear unbiased prediction
dc.subject.enHierarchical Bayes analysis
dcterms.sourcetitleLithuanian mathematical journal
dc.description.issueno. 2
dc.description.volumeVol. 55
dc.publisher.nameSpringer
dc.publisher.cityNew York
dc.identifier.doi000354636800006
dc.identifier.doi10.1007/s10986-015-9277-9
dc.identifier.elaba8776763


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record