dc.contributor.author | Krapavickaitė, Danutė | |
dc.contributor.author | Rudys, Tomas | |
dc.date.accessioned | 2023-09-18T20:42:55Z | |
dc.date.available | 2023-09-18T20:42:55Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0363-1672 | |
dc.identifier.other | (BIS)VGT02-000030438 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151916 | |
dc.description.abstract | One of the main research trends in contemporary survey sampling and the need to improve the accuracy of the Lithuanian Labor force survey estimates in small geographic areas have stimulated this study. The aim of the paper is to compare area level models and estimation methods for the fraction of the unemployed using simulation based on the Lithuanian Labor Force Survey data. The Fay–Herriot area level model, estimated by empirical best linear unbiased prediction, and the unmatched logit-normal-normal and binomial- logit-normal models, estimated using hierarchical Bayes analysis, are applied. Bayesian imputation is used for areas without sample data. We suggest the composition of some model elements. | eng |
dc.format | PDF | |
dc.format.extent | p. 243-254 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Gale's Academic OneFile | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Zentralblatt MATH (zbMATH) | |
dc.relation.isreferencedby | SpringerLink | |
dc.source.uri | https://doi.org/10.1007/s10986-015-9277-9 | |
dc.subject | FM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes | |
dc.title | Small area estimates for the fraction of the unemployed | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 25 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | Finite population | |
dc.subject.en | Small area estimation | |
dc.subject.en | Best linear unbiased prediction | |
dc.subject.en | Hierarchical Bayes analysis | |
dcterms.sourcetitle | Lithuanian mathematical journal | |
dc.description.issue | no. 2 | |
dc.description.volume | Vol. 55 | |
dc.publisher.name | Springer | |
dc.publisher.city | New York | |
dc.identifier.doi | 000354636800006 | |
dc.identifier.doi | 10.1007/s10986-015-9277-9 | |
dc.identifier.elaba | 8776763 | |