dc.contributor.author | Amiranashvili, Shalva | |
dc.contributor.author | Radžiūnas, Mindaugas | |
dc.contributor.author | Badelow, Uwe | |
dc.contributor.author | Busch, Kurt | |
dc.contributor.author | Čiegis, Raimondas | |
dc.date.accessioned | 2023-09-18T20:42:55Z | |
dc.date.available | 2023-09-18T20:42:55Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0021-9991 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151920 | |
dc.description.abstract | We demonstrate how a multiplicative splitting method of order $P$ can be utilized to construct an additive splitting method of order $P+3$. The weight coefficients of the additive method depend only on $P$, which must be an odd number. Specifically we discuss a fourth-order additive method, which is yielded by the Lie-Trotter splitting. We provide error estimates, stability analysis of a test problem, and numerical examples with special discussion of the parallelization properties and applications to nonlinear optics. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-14 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Chemical abstracts | |
dc.relation.isreferencedby | Zentralblatt MATH (zbMATH) | |
dc.source.uri | https://doi.org/10.1016/j.jcp.2021.110320 | |
dc.title | Additive splitting methods for parallel solutions of evolution problems | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 42 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Weierstrass Institute, Berlin | |
dc.contributor.institution | Max-Born-Institut, Berlin Humboldt University of Berlin | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.studydirection | A01 - Matematika / Mathematics | |
dc.subject.studydirection | A02 - Taikomoji matematika / Applied mathematics | |
dc.subject.vgtuprioritizedfields | FM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | Splitting method | |
dc.subject.en | Richardson extrapolation | |
dc.subject.en | nonlinear Schrodinger equation | |
dc.subject.en | nonlinear optics | |
dcterms.sourcetitle | Journal of computational physics | |
dc.description.volume | vol. 436 | |
dc.publisher.name | Elsevier | |
dc.publisher.city | San Diego | |
dc.identifier.doi | 000746492700017 | |
dc.identifier.doi | 10.1016/j.jcp.2021.110320 | |
dc.identifier.elaba | 88958027 | |