Rodyti trumpą aprašą

dc.contributor.authorAmiranashvili, Shalva
dc.contributor.authorRadžiūnas, Mindaugas
dc.contributor.authorBadelow, Uwe
dc.contributor.authorBusch, Kurt
dc.contributor.authorČiegis, Raimondas
dc.date.accessioned2023-09-18T20:42:55Z
dc.date.available2023-09-18T20:42:55Z
dc.date.issued2021
dc.identifier.issn0021-9991
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151920
dc.description.abstractWe demonstrate how a multiplicative splitting method of order $P$ can be utilized to construct an additive splitting method of order $P+3$. The weight coefficients of the additive method depend only on $P$, which must be an odd number. Specifically we discuss a fourth-order additive method, which is yielded by the Lie-Trotter splitting. We provide error estimates, stability analysis of a test problem, and numerical examples with special discussion of the parallelization properties and applications to nonlinear optics.eng
dc.formatPDF
dc.format.extentp. 1-14
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyChemical abstracts
dc.relation.isreferencedbyZentralblatt MATH (zbMATH)
dc.source.urihttps://doi.org/10.1016/j.jcp.2021.110320
dc.titleAdditive splitting methods for parallel solutions of evolution problems
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references42
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionWeierstrass Institute, Berlin
dc.contributor.institutionMax-Born-Institut, Berlin Humboldt University of Berlin
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.studydirectionA01 - Matematika / Mathematics
dc.subject.studydirectionA02 - Taikomoji matematika / Applied mathematics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enSplitting method
dc.subject.enRichardson extrapolation
dc.subject.ennonlinear Schrodinger equation
dc.subject.ennonlinear optics
dcterms.sourcetitleJournal of computational physics
dc.description.volumevol. 436
dc.publisher.nameElsevier
dc.publisher.citySan Diego
dc.identifier.doi000746492700017
dc.identifier.doi10.1016/j.jcp.2021.110320
dc.identifier.elaba88958027


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą