Rodyti trumpą aprašą

dc.contributor.authorKonovalenko, Ihor
dc.contributor.authorMaruschak, Pavlo
dc.contributor.authorBrevus, Vitaly
dc.contributor.authorPrentkovskis, Olegas
dc.date.accessioned2023-09-18T20:43:05Z
dc.date.available2023-09-18T20:43:05Z
dc.date.issued2021
dc.identifier.issn2075-4701
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151973
dc.description.abstractClassification of steel surface defects in steel industry is essential for their detection and also fundamental for the analysis of causes that lead to damages. Timely detection of defects allows to reduce the frequency of their appearance in the final product. This paper considers the classifiers for the recognition of scratches, scrapes and abrasions on metal surfaces. Classifiers are based on the ResNet50 and ResNet152 deep residual neural network architecture. The proposed technique supports the recognition of defects in images and does this with high accuracy. The binary accuracy of the classification based on the test data is 97.14%. The influence of a number of training conditions on the accuracy metrics of the model have been studied. The augmentation conditions have been figured out to make the greatest contribution to improving the accuracy during training. The peculiarities of damages that cause difficulties in their recognition have been studied. The fields of neuron activation have been investigated in the convolutional layers of the model. Feature maps which developed in this case have been found to correspond to the location of the objects of interest. Erroneous cases of the classifier application have been considered. The peculiarities of damages that cause difficulties in their recognition have been studied.eng
dc.formatPDF
dc.format.extentp. 1-14
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.mdpi.com/2075-4701/11/4/549
dc.source.urihttps://doi.org/10.3390/met11040549
dc.titleRecognition of scratches and abrasions on metal surfaces using a classifier based on a convolutional neural network
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references35
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionTernopil National Ivan Puluj Technical University
dc.contributor.institutionDataEngi LLC
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyTransporto inžinerijos fakultetas / Faculty of Transport Engineering
dc.subject.researchfieldT 003 - Transporto inžinerija / Transport engineering
dc.subject.researchfieldT 008 - Medžiagų inžinerija / Material engineering
dc.subject.vgtuprioritizedfieldsTD0202 - Aplinką tausojantis transportas / Environment-friendly transport
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.ensteel sheet
dc.subject.ensurface defects
dc.subject.envisual inspection technology
dc.subject.enclassification
dc.subject.enneural network
dcterms.sourcetitleMetals: Special Issue Application of Alloys in Transpor
dc.description.issueiss. 4
dc.description.volumevol. 11
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000643267400001
dc.identifier.doi10.3390/met11040549
dc.identifier.elaba88574078


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą