dc.contributor.author | Tumas, Paulius | |
dc.contributor.author | Serackis, Artūras | |
dc.contributor.author | Nowosielski, Adam | |
dc.date.accessioned | 2023-09-18T20:43:24Z | |
dc.date.available | 2023-09-18T20:43:24Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2079-9292 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152044 | |
dc.description.abstract | Pedestrian detection is an essential task for computer vision and the automotive industry. Complex systems like advanced driver-assistance systems are based on far-infrared data sensors, used to detect pedestrians at nighttime, fog, rain, and direct sun situations. The robust pedestrian detector should work in severe weather conditions. However, only a few datasets include some examples of far-infrared images with distortions caused by atmospheric precipitation and dirt covering sensor optics. This paper proposes the deep learning-based data augmentation technique to enrich far-infrared images collected in good weather conditions by distortions, similar to those caused by bad weather. The six most accurate and fast detectors (TinyV3, TinyL3, You Only Look Once (YOLO)v3, YOLOv4, ResNet50, and ResNext50), performing faster than 15 FPS, were trained on 207,001 annotations and tested on 156,345 annotations, not used for training. The proposed data augmentation technique showed up to a 9.38 mean Average Precision (mAP) increase of pedestrian detection with a maximum of 87.02 mAP (YOLOv4). Proposed in this paper detectors’ Head modifications based on a confidence heat-map gave an additional boost of precision for all six detectors. The most accurate current detector, based on YOLOv4, reached up to 87.20 mAP during our experimental tests. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-16 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Gale's Academic OneFile | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://doi.org/10.3390/electronics10080934 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:90432263/datastreams/MAIN/content | |
dc.subject | H600 - Elektronikos ir elektros inžinerija / Electronic and electrical engineering | |
dc.title | Augmentation of severe weather impact to far-infrared sensor iImages to improve pedestrian detection system | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 74 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | West Pomeranian University of Technology, Szczecin | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.studydirection | B04 - Informatikos inžinerija / Informatics engineering | |
dc.subject.vgtuprioritizedfields | IK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | FIR pedestrian detection | |
dc.subject.en | image noise | |
dc.subject.en | data augmentation | |
dc.subject.en | bad weather | |
dc.subject.en | confidense heat-map | |
dc.subject.en | ADAS | |
dc.subject.en | YOLO | |
dc.subject.en | ResNet50 | |
dc.subject.en | ResNext50 | |
dc.subject.en | DnCNN | |
dcterms.sourcetitle | Electronics: Special issue: AI-based autonomous driving system | |
dc.description.issue | iss. 8 | |
dc.description.volume | vol. 10 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 000644022600001 | |
dc.identifier.doi | 10.3390/electronics10080934 | |
dc.identifier.elaba | 90432263 | |