Show simple item record

dc.contributor.authorTumas, Paulius
dc.contributor.authorSerackis, Artūras
dc.contributor.authorNowosielski, Adam
dc.date.accessioned2023-09-18T20:43:24Z
dc.date.available2023-09-18T20:43:24Z
dc.date.issued2021
dc.identifier.issn2079-9292
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152044
dc.description.abstractPedestrian detection is an essential task for computer vision and the automotive industry. Complex systems like advanced driver-assistance systems are based on far-infrared data sensors, used to detect pedestrians at nighttime, fog, rain, and direct sun situations. The robust pedestrian detector should work in severe weather conditions. However, only a few datasets include some examples of far-infrared images with distortions caused by atmospheric precipitation and dirt covering sensor optics. This paper proposes the deep learning-based data augmentation technique to enrich far-infrared images collected in good weather conditions by distortions, similar to those caused by bad weather. The six most accurate and fast detectors (TinyV3, TinyL3, You Only Look Once (YOLO)v3, YOLOv4, ResNet50, and ResNext50), performing faster than 15 FPS, were trained on 207,001 annotations and tested on 156,345 annotations, not used for training. The proposed data augmentation technique showed up to a 9.38 mean Average Precision (mAP) increase of pedestrian detection with a maximum of 87.02 mAP (YOLOv4). Proposed in this paper detectors’ Head modifications based on a confidence heat-map gave an additional boost of precision for all six detectors. The most accurate current detector, based on YOLOv4, reached up to 87.20 mAP during our experimental tests.eng
dc.formatPDF
dc.format.extentp. 1-16
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyGale's Academic OneFile
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.3390/electronics10080934
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:90432263/datastreams/MAIN/content
dc.subjectH600 - Elektronikos ir elektros inžinerija / Electronic and electrical engineering
dc.titleAugmentation of severe weather impact to far-infrared sensor iImages to improve pedestrian detection system
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references74
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionWest Pomeranian University of Technology, Szczecin
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enFIR pedestrian detection
dc.subject.enimage noise
dc.subject.endata augmentation
dc.subject.enbad weather
dc.subject.enconfidense heat-map
dc.subject.enADAS
dc.subject.enYOLO
dc.subject.enResNet50
dc.subject.enResNext50
dc.subject.enDnCNN
dcterms.sourcetitleElectronics: Special issue: AI-based autonomous driving system
dc.description.issueiss. 8
dc.description.volumevol. 10
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000644022600001
dc.identifier.doi10.3390/electronics10080934
dc.identifier.elaba90432263


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record