Rodyti trumpą aprašą

dc.contributor.authorŠtrimaitis, Rokas
dc.contributor.authorStefanovič, Pavel
dc.contributor.authorRamanauskaitė, Simona
dc.contributor.authorSlotkienė, Asta
dc.date.accessioned2023-09-18T20:43:56Z
dc.date.available2023-09-18T20:43:56Z
dc.date.issued2021
dc.identifier.issn2076-3417
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152146
dc.description.abstractFinancial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).eng
dc.formatPDF
dc.format.extentp. 1-13
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyGale's Academic OneFile
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.3390/app11104443
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:93350235/datastreams/MAIN/content
dc.titleFinancial context news sentiment analysis for the Lithuanian language
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references30
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.ensentiment analysis
dc.subject.enfinancial news analysis
dc.subject.ensupervised machine learning
dc.subject.enLithuanian language
dcterms.sourcetitleApplied sciences: Special issue: Advances in artificial intelligence methods for natural language processing
dc.description.issueiss. 10
dc.description.volumevol. 11
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000662480100001
dc.identifier.doi10.3390/app11104443
dc.identifier.elaba93350235


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą