dc.contributor.author | Štrimaitis, Rokas | |
dc.contributor.author | Stefanovič, Pavel | |
dc.contributor.author | Ramanauskaitė, Simona | |
dc.contributor.author | Slotkienė, Asta | |
dc.date.accessioned | 2023-09-18T20:43:56Z | |
dc.date.available | 2023-09-18T20:43:56Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152146 | |
dc.description.abstract | Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%). | eng |
dc.format | PDF | |
dc.format.extent | p. 1-13 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Gale's Academic OneFile | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://doi.org/10.3390/app11104443 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:93350235/datastreams/MAIN/content | |
dc.title | Financial context news sentiment analysis for the Lithuanian language | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 30 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.researchfield | N 009 - Informatika / Computer science | |
dc.subject.vgtuprioritizedfields | IK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | sentiment analysis | |
dc.subject.en | financial news analysis | |
dc.subject.en | supervised machine learning | |
dc.subject.en | Lithuanian language | |
dcterms.sourcetitle | Applied sciences: Special issue: Advances in artificial intelligence methods for natural language processing | |
dc.description.issue | iss. 10 | |
dc.description.volume | vol. 11 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 000662480100001 | |
dc.identifier.doi | 10.3390/app11104443 | |
dc.identifier.elaba | 93350235 | |