Show simple item record

dc.contributor.authorSymeonidis, Panagiotis
dc.contributor.authorKirjackaja, Lidija
dc.contributor.authorZanker, Markus
dc.date.accessioned2023-09-18T20:44:02Z
dc.date.available2023-09-18T20:44:02Z
dc.date.issued2021
dc.identifier.issn0957-4174
dc.identifier.other(SCIDIR_EID)1-s2.0-S0957417421004693
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152163
dc.description.abstractRecommender systems are among the most widespread applications of artificial intelligence techniques. For instance, news recommender systems serve users in managing the overload of information they come across when accessing news portals. Obviously, in the news domain time-awareness of recommendation approaches are crucial. However, most of these approaches missed to consider user sessions, which group the items that a user interacted with. In this paper, we study the problem of session-based recommendations by running SimRank on time-evolving heterogeneous graphs. In particular, we construct a dynamic heterogeneous multi-partite graph and adjust SimRank to run on it by using different (i) sliding time window sizes, (ii) sub-graphs used for model learning and (iii) sequential article weighting strategies. We evaluate our algorithms on two real-life datasets, and we show that our method outperforms other state-of-the-art methods in terms of accuracy and diversity. The significance and impact of this work is important because it introduces to the research community of expert and intelligent systems, for the first time, a stream-based version of SimRank algorithm, which is able to run over time-evolving graphs.eng
dc.formatPDF
dc.format.extentp. 1-10
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0957417421004693
dc.source.urihttps://doi.org/10.1016/j.eswa.2021.115028
dc.titleSession-based news recommendations using SimRank on multi-modal graphs
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references32
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionUniversity of the Aegean
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionFree University of Bolzano
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.engraph-based news recommender systems
dc.subject.entime evolving graphs
dc.subject.ennovel news article recommendations
dcterms.sourcetitleExpert systems with applications
dc.description.volumevol. 180
dc.publisher.nameElsevier
dc.publisher.cityOxford
dc.identifier.doi1-s2.0-S0957417421004693
dc.identifier.doiS0957-4174(21)00469-3
dc.identifier.doi85105584489
dc.identifier.doi2-s2.0-85105584489
dc.identifier.doi0
dc.identifier.doi000663582400010
dc.identifier.doi10.1016/j.eswa.2021.115028
dc.identifier.elaba94550838


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record