Show simple item record

dc.contributor.authorJakubovskis, Ronaldas
dc.contributor.authorIvaškė, Augusta
dc.contributor.authorGuobužaitė, Simona
dc.contributor.authorBoris, Renata
dc.contributor.authorUrbonavičius, Jaunius
dc.date.accessioned2023-09-18T20:44:09Z
dc.date.available2023-09-18T20:44:09Z
dc.date.issued2021
dc.identifier.issn1996-1944
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152182
dc.description.abstractOne of the biggest challenges in the development of a biological self-healing concrete is to ensure the long-term viability of bacteria that are embedded in the concrete. In the present study, a coated expanded clay (EC) is investigated for its potential use as a bacterial carrier in biological concrete. Eight different materials for coatings were selected considering cost, workability and accessibility in the construction industry. Long-term (56 days) viability analysis was conducted with a final evaluation of each coating performance. Our results indicate that healing efficiency in biological concrete specimens is strongly related to viable bacteria present in the healing agent. More viable bacteria-containing specimens exhibited a higher crack closure ratio. Our data suggest that the additional coating of EC particles improves long-term bacterial viability and, consequently, provides efficient crack healing in biological concrete.eng
dc.formatPDF
dc.format.extentp. 1-11
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyCABI Abstracts
dc.relation.isreferencedbyEI Compendex Plus
dc.relation.isreferencedbyPubMed
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.3390/ma14112719
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:94785156/datastreams/MAIN/content
dc.titleProlonging bacterial viability in biological concrete: coated expanded clay particles
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references29
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.departmentStatinių ir tiltų konstrukcijų institutas / Institute of Building and Bridge Structures
dc.contributor.departmentStatybinių medžiagų institutas / Institute of Building Materials
dc.subject.researchfieldT 008 - Medžiagų inžinerija / Material engineering
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.researchfieldN 004 - Biochemija / Biochemistry
dc.subject.researchfieldT 005 - Chemijos inžinerija / Chemical engineering
dc.subject.vgtuprioritizedfieldsSD0202 - Aplinką tausojančios statybinės medžiagos ir technologijos / Low emissions building materials and technologies
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enbiological concrete
dc.subject.enself-healing concrete
dc.subject.enbacterial viability
dc.subject.encrack healing
dc.subject.enexpanded clay
dcterms.sourcetitleMaterials: Special issue: Self-healing concrete and cement-based materials
dc.description.issueiss. 11
dc.description.volumevol. 14
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000660943500001
dc.identifier.doi10.3390/ma14112719
dc.identifier.elaba94785156


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record