Rodyti trumpą aprašą

dc.contributor.authorČiegis, Raimondas
dc.contributor.authorVabishchevich, Piotr
dc.date.accessioned2023-09-18T20:44:34Z
dc.date.available2023-09-18T20:44:34Z
dc.date.issued2021
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152248
dc.description.abstractIn this paper we develop and investigate numerical algorithms for solving the fractional powers of discrete elliptic operators with Vh a finite element or finite difference approximation space. Our goal is to construct efficient time stepping schemes for the implementation of the method based on the solution of a pseudo-parabolic problem. The second and fourth order approximations are constructed by using two- and three-level schemes. In order to increase the accuracy of approximations the geometric graded time grid is constructed which compensates the singular behavior of the solution for t close to 0. This apriori adaptive grid is compared with aposteriori adaptive grids. Results of numerical experiments are presented, they agree well with the theoretical results.eng
dc.formatPDF
dc.format.extentp. 285-292
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.ispartofseriesLecture Notes in Computational Science and Engineering (LNCSE) vol. 139 1439-7358 2197-7100
dc.relation.isreferencedbyScopus
dc.source.urihttps://doi.org/10.1007/978-3-030-55874-1_27
dc.titleHigh-order two and three level schemes for solving fractional powers of elliptic operators
dc.typeKitos knygos dalis / A part of other book
dcterms.references9
dc.type.pubtypeY7 - Kitos knygos dalis / A part of other book
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionNuclear Safety Institute, Russian Academy of Sciences
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.studydirectionA02 - Taikomoji matematika / Applied mathematics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enfinite difference methods
dc.subject.ennonlocal problems
dc.subject.enstability
dcterms.sourcetitleNumerical mathematics and advanced applications ENUMATH 2019: European conference, Delft University of Technology, Egmond aan Zee, The Netherlands, September 30 - October 4, 2019
dc.publisher.nameSpringer
dc.publisher.cityCham
dc.identifier.doi10.1007/978-3-030-55874-1_27
dc.identifier.elaba96058800


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą