Show simple item record

dc.contributor.authorMeleško, Jaroslav
dc.contributor.authorRamanauskaitė, Simona
dc.date.accessioned2023-09-18T20:45:04Z
dc.date.available2023-09-18T20:45:04Z
dc.date.issued2021
dc.identifier.issn2076-3417
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152323
dc.description.abstractFeedback is a crucial component of effective, personalized learning, and is usually provided through formative assessment. Introducing formative assessment into a classroom can be challenging because of test creation complexity and the need to provide time for assessment. The newly proposed formative assessment algorithm uses multivariate Elo rating and multi-armed bandit approaches to solve these challenges. In the case study involving 106 students of the Cloud Computing course, the algorithm shows double learning path recommendation precision compared to classical test theory based assessment methods. The algorithm usage approaches item response theory benchmark precision with greatly reduced quiz length without the need for item difficulty calibration.eng
dc.formatPDF
dc.format.extentp. 1-15
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2076-3417/11/13/6048/htm
dc.source.urihttps://doi.org/10.3390/app11136048
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:98869842/datastreams/MAIN/content
dc.titleTime saving students’ formative assessment: Algorithm to balance number of tasks and result reliability
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references61
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enformative assessment
dc.subject.enmulti-armed bandit
dc.subject.enmultivariate Elo-rating
dc.subject.enupper-confidence bound algorithm
dc.subject.enpersonalized learning
dc.subject.ene-learning
dc.subject.enadaptive testing
dcterms.sourcetitleApplied sciences: Special Issue Innovations in the Field of Cloud Computing and Education
dc.description.issueiss. 13
dc.description.volumevol. 11
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000672267000001
dc.identifier.doi10.3390/app11136048
dc.identifier.elaba98869842


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record