dc.contributor.author | Belovas, Igoris | |
dc.contributor.author | Sakalauskas, Leonidas | |
dc.contributor.author | Starikovičius, Vadimas | |
dc.contributor.author | Sun, Edward W. | |
dc.date.accessioned | 2023-09-18T20:45:11Z | |
dc.date.available | 2023-09-18T20:45:11Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1099-4300 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152336 | |
dc.description.abstract | The paper extends the study of applying the mixed-stable models to the analysis of large sets of high-frequency financial data. The empirical data under review are the German DAX stock index yearly log-returns series. Mixed-stable models for 29 DAX companies are constructed employing efficient parallel algorithms for the processing of long-term data series. The adequacy of the modeling is verified with the empirical characteristic function goodness-of-fit test. We propose the smart- ∆ method for the calculation of the α-stable probability density function. We study the impact of the accuracy of the computation of the probability density function and the accuracy of ML-optimization on the results of the modeling and processing time. The obtained mixed-stable parameter estimates can be used for the construction of the optimal asset portfolio. | eng |
dc.format | PDF | |
dc.format.extent | p. [1-12] | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | PubMed | |
dc.relation.isreferencedby | MathSciNet | |
dc.relation.isreferencedby | Social Sciences Citation Index (Web of Science) | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:97563119/datastreams/MAIN/content | |
dc.title | Mixed-stable models: an application to high-frequency financial data | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 26 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | KEDGE Business School, France | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.studydirection | A02 - Taikomoji matematika / Applied mathematics | |
dc.subject.studydirection | A03 - Statistika / Statistics | |
dc.subject.en | mixed-stable models | |
dc.subject.en | high-frequency data | |
dc.subject.en | stock index returns | |
dcterms.sourcetitle | Entropy | |
dc.description.issue | iss. 6 | |
dc.description.volume | vol. 23 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 000665574300001 | |
dc.identifier.doi | 10.3390/e23060739 | |
dc.identifier.elaba | 97563119 | |