Rodyti trumpą aprašą

dc.contributor.authorBelovas, Igoris
dc.contributor.authorSakalauskas, Leonidas
dc.contributor.authorStarikovičius, Vadimas
dc.contributor.authorSun, Edward W.
dc.date.accessioned2023-09-18T20:45:11Z
dc.date.available2023-09-18T20:45:11Z
dc.date.issued2021
dc.identifier.issn1099-4300
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152336
dc.description.abstractThe paper extends the study of applying the mixed-stable models to the analysis of large sets of high-frequency financial data. The empirical data under review are the German DAX stock index yearly log-returns series. Mixed-stable models for 29 DAX companies are constructed employing efficient parallel algorithms for the processing of long-term data series. The adequacy of the modeling is verified with the empirical characteristic function goodness-of-fit test. We propose the smart- ∆ method for the calculation of the α-stable probability density function. We study the impact of the accuracy of the computation of the probability density function and the accuracy of ML-optimization on the results of the modeling and processing time. The obtained mixed-stable parameter estimates can be used for the construction of the optimal asset portfolio.eng
dc.formatPDF
dc.format.extentp. [1-12]
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyPubMed
dc.relation.isreferencedbyMathSciNet
dc.relation.isreferencedbySocial Sciences Citation Index (Web of Science)
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:97563119/datastreams/MAIN/content
dc.titleMixed-stable models: an application to high-frequency financial data
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references26
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionKEDGE Business School, France
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.studydirectionA02 - Taikomoji matematika / Applied mathematics
dc.subject.studydirectionA03 - Statistika / Statistics
dc.subject.enmixed-stable models
dc.subject.enhigh-frequency data
dc.subject.enstock index returns
dcterms.sourcetitleEntropy
dc.description.issueiss. 6
dc.description.volumevol. 23
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000665574300001
dc.identifier.doi10.3390/e23060739
dc.identifier.elaba97563119


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą