dc.contributor.author | Gribniak, Viktor | |
dc.contributor.author | Kaklauskas, Gintaris | |
dc.contributor.author | Juozapaitis, Algirdas | |
dc.contributor.author | Kliukas, Romualdas | |
dc.contributor.author | Meškėnas, Adas | |
dc.date.accessioned | 2023-09-18T20:45:57Z | |
dc.date.available | 2023-09-18T20:45:57Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1741-5977 | |
dc.identifier.other | (BIS)VGT02-000032050 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152434 | |
dc.description.abstract | One of the most difficult issues in the theory of reinforced concrete (RC) is an adequate modelling of deformation behaviour, cracking and, particularly, post-cracking behaviour, as one of the major sources of non-linearity. Applying the concept of average cracking and average strains, deformation behaviour of RC can be modelled by stress–strain tension–stiffening relationships. The authors proposed an innovative inverse technique for constitutive modelling of flexural RC elements. The technique is based on the smeared crack approach and layer model of RC section. The inverse technique aims at deriving tension–stiffening constitutive models from experimental moment–curvature diagrams. The present analysis takes into account the shrinkage effect that is often neglected in other studies. Based on the inverse technique, free-of-shrinkage tension–stiffening relationships are derived using test data of shrunk RC beams. Examples of the application for the analysis of the experimental data obtained by the authors are presented to illustrate the calculation efficiency of the proposed technique. | eng |
dc.format | PDF | |
dc.format.extent | p. 27-40 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Zentralblatt MATH (zbMATH) | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.source.uri | http://dx.doi.org/10.1080/17415977.2015.1135139 | |
dc.subject | FM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes | |
dc.title | Efficient technique for constitutive analysis of reinforced concrete flexural members | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 29 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.department | Statinių konstrukcijų mokslo institutas / Research Institute of Building Structures | |
dc.subject.researchfield | T 002 - Statybos inžinerija / Construction and engineering | |
dc.subject.researchfield | T 008 - Medžiagų inžinerija / Material engineering | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.ltspecializations | C101 - Civilinės inžinerijos mokslo centras / | |
dc.subject.en | Reinforced concrete | |
dc.subject.en | Inverse analysis | |
dc.subject.en | Constitutive modelling | |
dc.subject.en | Tension stiffening | |
dc.subject.en | Experimental results | |
dc.subject.en | 65D15 | |
dc.subject.en | 65D30 | |
dcterms.sourcetitle | Inverse problems in science and engineering | |
dc.description.issue | iss. 1 | |
dc.description.volume | Vol. 25 | |
dc.publisher.name | Taylor & Francis | |
dc.publisher.city | Oxon | |
dc.identifier.doi | 000386704300003 | |
dc.identifier.doi | 2-s2.0-84954228337 | |
dc.identifier.doi | 10.1080/17415977.2015.1135139 | |
dc.identifier.elaba | 19613125 | |