dc.contributor.author | Märdla, Silja | |
dc.contributor.author | Ågren, Jonas | |
dc.contributor.author | Strykowski, Gabriel | |
dc.contributor.author | Tonis, Oja | |
dc.contributor.author | Ellmanna, Artu | |
dc.contributor.author | Forsberg, Rene | |
dc.contributor.author | Bilker-Koivulae, Mirjam | |
dc.contributor.author | Omang, Ove | |
dc.contributor.author | Paršeliūnas, Eimuntas Kazimieras | |
dc.contributor.author | Liepins, Ivars | |
dc.contributor.author | Kaminskis, Janis | |
dc.date.accessioned | 2023-09-18T20:46:11Z | |
dc.date.available | 2023-09-18T20:46:11Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0149-0419 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152468 | |
dc.description.abstract | The deduction of a regularly spaced gravity anomaly grid from scattered survey data is studied, addressing mainly two aspects: reduction of gravity to anomalies and subsequent interpolation by various methods. The problem is illustrated in a heterogeneous study area and contrasting test areas including mountains, low terrains, and a marine area. Provided with realistic error estimates, Least Squares Collocation interpolation of Residual Terrain Model anomalies yields the highest quality gravity grid. In most cases, the Bouguer reduction and other interpolation methods tested are equally viable. However, spline-based interpolation should be avoided in marine areas with trackwise survey data. | eng |
dc.format | PDF | |
dc.format.extent | p. 416-453 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Current Contents / Physical, Chemical & Earth Sciences | |
dc.relation.isreferencedby | GEOBASE | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Environment Abstracts/Enviroline | |
dc.source.uri | http://dx.doi.org/10.1080/01490419.2017.1326428 | |
dc.subject | AE01 - Aplinkos sistemos ir aplinkos apsaugos technologijos / Environmental systems and environment protection technologies | |
dc.title | From discrete gravity survey data to a highresolution gravity field representation in the Nordic-Baltic region | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 98 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Tallinn University of Technology | |
dc.contributor.institution | Lantmäteriet. The Swedish Mapping, Cadastral, and Land Registration Authority | |
dc.contributor.institution | Technical University of Denmark, Lyngby | |
dc.contributor.institution | Estonian Land Board, Tallinn | |
dc.contributor.institution | Finnish Geospatial Research Institute, National Land Survey of Finland, Masala | |
dc.contributor.institution | Norwegian Mapping Authority, Hønefoss | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Latvian Geospatial Information Agency, Riga | |
dc.contributor.institution | Riga Technical University | |
dc.contributor.faculty | Aplinkos inžinerijos fakultetas / Faculty of Environmental Engineering | |
dc.subject.researchfield | T 010 - Matavimų inžinerija / Measurement engineering | |
dc.subject.researchfield | T 004 - Aplinkos inžinerija / Environmental engineering | |
dc.subject.ltspecializations | L102 - Energetika ir tvari aplinka / Energy and a sustainable environment | |
dc.subject.en | Bouguer anomaly | |
dc.subject.en | Gravity | |
dc.subject.en | Regional geoid | |
dcterms.sourcetitle | Marine geodesy | |
dc.description.issue | iss. 6 | |
dc.description.volume | Vol. 40 | |
dc.publisher.name | Taylor & Francis | |
dc.publisher.city | Philadelphia | |
dc.identifier.doi | 000418472600004 | |
dc.identifier.doi | 2-s2.0-85021315983 | |
dc.identifier.doi | 10.1080/01490419.2017.1326428 | |
dc.identifier.elaba | 24378733 | |