Rodyti trumpą aprašą

dc.contributor.authorČiegis, Raimondas
dc.contributor.authorTumanova, Natalija
dc.date.accessioned2023-09-18T20:47:29Z
dc.date.available2023-09-18T20:47:29Z
dc.date.issued2012
dc.identifier.issn0163-0563
dc.identifier.other(BIS)VGT02-000024167
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152635
dc.description.abstractWe consider a parabolic problem on branched structures. The Hodgkin–Huxley reactiondiffusion equation is a well-known example of such type models. The diffusion equations on edges of a graph are coupled by two types of conjugation conditions at branch points. The first one describes a conservation of the fluxes at vertexes, and the second conjugation condition defines the conservation of the current flowing at the soma in neuron models. The differential problem is approximated by a θ-implicit finite difference scheme which is based on the θ-method for ODEs. The stability and convergence of the discrete solution is proved in L2, H1, and L∞ norms. The main goal is to estimate the influence of the approximation errors introduced at the branch points of the first type. Results of numerical experiments are presented.eng
dc.formatPDF
dc.format.extentp. 1-20
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyZentralblatt MATH (zbMATH)
dc.relation.isreferencedbyCompuMath Citation Index
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.titleStability analysis of implicit finite-difference schemes for parabolic problems on graphs
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references22
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.enConvergence
dc.subject.enError estimates
dc.subject.enEuler algorithm
dc.subject.enFinite difference method
dc.subject.enGraphs
dc.subject.enParabolic problem
dc.subject.enStability
dc.subject.enθ-method
dcterms.sourcetitleNumerical Functional Analysis and Optimization
dc.description.issueiss. 1
dc.description.volumeVol. 33
dc.publisher.nameTaylor & Francis
dc.publisher.cityPhiladelphia, USA
dc.identifier.doi10.1080/01630563.2011.626886
dc.identifier.elaba3972861


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą