dc.contributor.author | Čiegis, Raimondas | |
dc.contributor.author | Tumanova, Natalija | |
dc.date.accessioned | 2023-09-18T20:47:29Z | |
dc.date.available | 2023-09-18T20:47:29Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0163-0563 | |
dc.identifier.other | (BIS)VGT02-000024167 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152635 | |
dc.description.abstract | We consider a parabolic problem on branched structures. The Hodgkin–Huxley reactiondiffusion equation is a well-known example of such type models. The diffusion equations on edges of a graph are coupled by two types of conjugation conditions at branch points. The first one describes a conservation of the fluxes at vertexes, and the second conjugation condition defines the conservation of the current flowing at the soma in neuron models. The differential problem is approximated by a θ-implicit finite difference scheme which is based on the θ-method for ODEs. The stability and convergence of the discrete solution is proved in L2, H1, and L∞ norms. The main goal is to estimate the influence of the approximation errors introduced at the branch points of the first type. Results of numerical experiments are presented. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-20 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Zentralblatt MATH (zbMATH) | |
dc.relation.isreferencedby | CompuMath Citation Index | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.title | Stability analysis of implicit finite-difference schemes for parabolic problems on graphs | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 22 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.en | Convergence | |
dc.subject.en | Error estimates | |
dc.subject.en | Euler algorithm | |
dc.subject.en | Finite difference method | |
dc.subject.en | Graphs | |
dc.subject.en | Parabolic problem | |
dc.subject.en | Stability | |
dc.subject.en | θ-method | |
dcterms.sourcetitle | Numerical Functional Analysis and Optimization | |
dc.description.issue | iss. 1 | |
dc.description.volume | Vol. 33 | |
dc.publisher.name | Taylor & Francis | |
dc.publisher.city | Philadelphia, USA | |
dc.identifier.doi | 10.1080/01630563.2011.626886 | |
dc.identifier.elaba | 3972861 | |