Rodyti trumpą aprašą

dc.contributor.authorČiegis, Raimondas
dc.contributor.authorJankevičiūtė, Gerda
dc.contributor.authorLeonavičienė, Teresė
dc.contributor.authorMirinavičius, Aleksas
dc.date.accessioned2023-09-18T20:50:14Z
dc.date.available2023-09-18T20:50:14Z
dc.date.issued2014
dc.identifier.issn0163-0563
dc.identifier.other(BIS)VGT02-000028276
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152683
dc.description.abstractIn this paper one dimensional parabolic and pseudo-parabolic equations with nonlocal boundary conditions are approximated by the implicit Euler finite difference scheme. For a parabolic problem the stability analysis is done in the weak H−1 type norm, which enables us to generalize results obtained in stronger norms. In the case of a pseudo-parabolic problem the stability analysis is done in the discrete analog of the norm. It is shown that a solution of the proposed finite discrete scheme satisfies stronger stability estimates than a discrete solution of the parabolic problem. Results of numerical experiments are presented.eng
dc.formatPDF
dc.format.extentp. 1308-1327
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyZentralblatt MATH (zbMATH)
dc.relation.isreferencedbyCompuMath Citation Index
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttp://www.tandfonline.com/doi/full/10.1080/01630563.2014.908208
dc.subjectFM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes
dc.titleOn stability analysis of finite difference schemes for some parabolic problems with nonlocal boundary conditions
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references28
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enConvergence analysis
dc.subject.enFinite difference method
dc.subject.enNonlocal boundary conditions
dc.subject.enParabolic problem
dc.subject.enPseudo-parabolic problem
dc.subject.enStability
dcterms.sourcetitleNumerical Functional Analysis and Optimization
dc.description.issueiss. 10
dc.description.volumeVol. 35
dc.publisher.nameTaylor & Francis
dc.publisher.cityPhiladelphia
dc.identifier.doi10.1080/01630563.2014.908208
dc.identifier.elaba4071285


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą