dc.contributor.author | García, Fernando | |
dc.contributor.author | Guijarro, Francisco | |
dc.contributor.author | Oliver, Javier | |
dc.contributor.author | Tamošiūnienė, Rima | |
dc.date.accessioned | 2023-09-18T20:50:54Z | |
dc.date.available | 2023-09-18T20:50:54Z | |
dc.date.issued | 2023 | |
dc.identifier.other | (crossref_id)149554064 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152969 | |
dc.description.abstract | The prediction of currency prices is important for investors with foreign currency assets, both for speculation and for hedging the exchange rate risk. Classical time series models such as ARIMA models were relevant until the advent of neural networks. In particular, recurrent neural networks such as long short-term memory (LSTM) are show to be a good alternative model for the prediction of short-term stock prices. In this paper, we present a comparison between the ARIMA model and LSTM neural network. A hybrid model that combines the two models is also presented. In addition, the effectiveness of this model on Bitcoin’s future contract is analysed. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-7 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | DOAJ | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://www.mdpi.com/2673-4591/39/1/81 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:175654734/datastreams/MAIN/content | |
dc.title | Foreign exchange forecasting models: ARIMA and LSTM comparison | |
dc.type | Straipsnis Scopus DB / Article in Scopus DB | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 21 | |
dc.type.pubtype | S2 - Straipsnis Scopus DB / Scopus DB article | |
dc.contributor.institution | Universitat Politechnica de Valencia | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | |
dc.subject.researchfield | S 004 - Ekonomika / Economics | |
dc.subject.vgtuprioritizedfields | EV02 - Aukštos pridėtinės vertės ekonomika / High Value-Added Economy | |
dc.subject.ltspecializations | L103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society | |
dc.subject.en | ARIMA | |
dc.subject.en | LSTM | |
dc.subject.en | foreign exchange prediction | |
dcterms.sourcetitle | Engineering proceedings: ITISE 2023 : The 9th International Conference on Time Series and Forecasting, Gran Canaria, Spain, 12–14 July 2023 | |
dc.description.issue | iss. 1 | |
dc.description.volume | vol. 39 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 149554064 | |
dc.identifier.doi | 10.3390/engproc2023039081 | |
dc.identifier.elaba | 175654734 | |