Show simple item record

dc.contributor.authorGarcía, Fernando
dc.contributor.authorGuijarro, Francisco
dc.contributor.authorOliver, Javier
dc.contributor.authorTamošiūnienė, Rima
dc.date.accessioned2023-09-18T20:50:54Z
dc.date.available2023-09-18T20:50:54Z
dc.date.issued2023
dc.identifier.other(crossref_id)149554064
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152969
dc.description.abstractThe prediction of currency prices is important for investors with foreign currency assets, both for speculation and for hedging the exchange rate risk. Classical time series models such as ARIMA models were relevant until the advent of neural networks. In particular, recurrent neural networks such as long short-term memory (LSTM) are show to be a good alternative model for the prediction of short-term stock prices. In this paper, we present a comparison between the ARIMA model and LSTM neural network. A hybrid model that combines the two models is also presented. In addition, the effectiveness of this model on Bitcoin’s future contract is analysed.eng
dc.formatPDF
dc.format.extentp. 1-7
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2673-4591/39/1/81
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:175654734/datastreams/MAIN/content
dc.titleForeign exchange forecasting models: ARIMA and LSTM comparison
dc.typeStraipsnis Scopus DB / Article in Scopus DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references21
dc.type.pubtypeS2 - Straipsnis Scopus DB / Scopus DB article
dc.contributor.institutionUniversitat Politechnica de Valencia
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.vgtuprioritizedfieldsEV02 - Aukštos pridėtinės vertės ekonomika / High Value-Added Economy
dc.subject.ltspecializationsL103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society
dc.subject.enARIMA
dc.subject.enLSTM
dc.subject.enforeign exchange prediction
dcterms.sourcetitleEngineering proceedings: ITISE 2023 : The 9th International Conference on Time Series and Forecasting, Gran Canaria, Spain, 12–14 July 2023
dc.description.issueiss. 1
dc.description.volumevol. 39
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi149554064
dc.identifier.doi10.3390/engproc2023039081
dc.identifier.elaba175654734


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record