Show simple item record

dc.contributor.authorŽvirblis, Tadas
dc.contributor.authorPetkevičius, Linas
dc.contributor.authorBzinkowski, Damian
dc.contributor.authorRucki, Miroslaw
dc.contributor.authorKilikevičius, Artūras
dc.date.accessioned2023-09-18T20:51:50Z
dc.date.available2023-09-18T20:51:50Z
dc.date.issued2022
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/153224
dc.formatPDF
dc.format.extentp. 104-105
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.ispartofseriesVilnius University Proceedings 2669-0233
dc.relation.isreferencedbyDimensions
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mii.lt/damss/files/damss_2022.pdf
dc.source.urihttps://www.zurnalai.vu.lt/proceedings/issue/archive
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:146816053/datastreams/MAIN/content
dc.subject00 - Klasifikacija netaikoma / Classification does not apply
dc.titleClassification of industrial conveyor load status using rubber belt tension and deep learning models
dc.typeKonferencijos pranešimo santrauka tarptautinėse DB / Conference presentation abstract in an international DB
dcterms.accessRightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references0
dc.type.pubtypeT1 - Konferencijos pranešimo tezės tarptautinėse DB / Conference presentation abstract in an international DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.institutionKazimierz Pułaski University of Technology and Humanities
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.contributor.departmentMechanikos mokslo institutas / Institute of Mechanical Science
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enindustrinis konvejeris
dc.subject.engiliojo mokymosi modeliai
dc.subject.endiržo įtempis
dcterms.sourcetitleDAMSS 2022: 13th conference on data analysis methods for software systems, Druskininkai, Lithuania, December 1–3, 2022
dc.publisher.nameVilniaus universitetas
dc.publisher.cityVilnius
dc.identifier.doi10.15388/DAMSS.13.2022
dc.identifier.elaba146816053


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record