Show simple item record

dc.contributor.authorLiogienė, Tatjana
dc.contributor.authorTamulevičius, Gintautas
dc.date.accessioned2023-09-18T20:52:01Z
dc.date.available2023-09-18T20:52:01Z
dc.date.issued2016
dc.identifier.issn2255-9140
dc.identifier.other(BIS)VGT02-000033244
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/153261
dc.description.abstractThe intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS) and Sequential Floating Forward Selection (SFFS) techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-featureselection- based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.eng
dc.formatPDF
dc.format.extentp. 35-41
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyEmerging Sources Citation Index (Web of Science)
dc.relation.isreferencedbyAcademic Search Complete
dc.relation.isreferencedbyDOAJ
dc.source.urihttps://ecce-journals.rtu.lv/article/view/1240/883
dc.subjectIK04 - Skaitmeninės signalų apdorojimo technologijos / Digital signal processing technologies
dc.titleMulti-stage recognition of speech emotion using sequential forward feature selection
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references19
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enclassification algorithms
dc.subject.enemotion recognition
dc.subject.enhuman voice
dcterms.sourcetitleElectrical, control and communication engineering
dc.description.issueiss. 1
dc.description.volumevol. 10
dc.publisher.nameDe Gruyter
dc.publisher.cityWarsaw
dc.identifier.doi000408497000005
dc.identifier.doi10.1515/ecce-2016-0005
dc.identifier.elaba20227320


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record