Show simple item record

dc.contributor.authorLiao, Huchang
dc.contributor.authorHe, Yangpeipei
dc.contributor.authorWu, Xueyao
dc.contributor.authorWu, Zheng
dc.contributor.authorBaušys, Romualdas
dc.date.accessioned2023-12-22T07:04:50Z
dc.date.available2023-12-22T07:04:50Z
dc.date.issued2023
dc.identifier.issn1566-2535
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153472
dc.description.abstractMulti-criterion decision making (MCDM) methods can derive alternative rankings as solutions to decisionmaking problems based on survey or historical data about the performance or preference information of alternatives regarding multiple criteria. Today’s information age makes it easy to accumulate data, but also brings challenges to MCDM, such as massive data and weak data correlation. The real data in the information age should be fully utilized to put MCDM from theoretical formulation into practical application. In this regard, machine learning technologies that can adaptively discover rules as well as patterns from data of different types and characteristics show great application potential. This study dedicates to exploring the status of implementing machine learning technologies in solving MCDM problems. The related work and research advances of MCDM and machine learning technologies are briefly described. A bibliometric analysis is conducted to provide an overview of the research status, hotspots, and trends. Then, we summarize the challenges of implementing MCDM in the information age in four aspects, around which we review the research status of applying machine learning technologies to criteria extraction, criteria interaction, parameter determination, and integrated solutions of MCDM. Also, the fields of practical applications about the subject matter including business management, industrial engineering, sustainable development, emergency management, along with other fields are reviewed. This study outlines how machine learning technologies contribute to MCDM. The lessons learned from the review and future research directions are discussed. It is hoped that this review can serve as a reference and provide convenience for scholars and practitioners in the fields of decision analysis and machine learning.eng
dc.formatPDF
dc.format.extentp. 1-20
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScienceDirect
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S1566253523002865
dc.titleReimagining multi-criterion decision making by data-driven methods based on machine learning: A literature review
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references177
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionSichuan University Vilniaus Gedimino technikos universitetas
dc.contributor.institutionSichuan University
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enmulti-criterion decision making
dc.subject.enmachine learning
dc.subject.eninformation fusion
dc.subject.enbibliometrics
dc.subject.enliterature review
dcterms.sourcetitleInformation fusion
dc.description.volumevol. 100
dc.publisher.nameElsevier BV
dc.publisher.cityAmsterdam
dc.identifier.doi151960081
dc.identifier.doi1-s2.0-S1566253523002865
dc.identifier.doiS1566-2535(23)00286-5
dc.identifier.doi85169912998
dc.identifier.doi2-s2.0-85169912998
dc.identifier.doi0
dc.identifier.doiS1566253523002865
dc.identifier.doi001073066900001
dc.identifier.doi10.1016/j.inffus.2023.101970
dc.identifier.elaba175034383


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record