• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid modeling of anxiety propagation in response to threat stimuli flow

Thumbnail
View/Open
mathematics-11-04121.pdf (1.955Mb)
Date
2023
Author
Sakalauskas, Leonidas
Denisov, Vitalij
Diržytė, Aistė
Metadata
Show full item record
Abstract
Previous studies have demonstrated that the rates of anxiety have been constantly increasing worldwide in recent years. To understand this phenomenon, based on the complemented cognitive model TVAPA of anxiety, the hybrid method of modeling and simulating the dynamics of anxiety in the population is proposed. The suggested method combines agent-based modeling, dynamic systems modeling with differential equations, and machine learning methods. The four-level STAI methodology is applied to assess anxiety in the proposed models. Sentiment analysis of social media content is used to identify the parameters of triggering stimuli flow. The proposed models were implemented and verified using open access data sets. Created models are characterized by simplicity, and the parameters used in them have a clear socio-informational meaning. The developed models can be calibrated by applying statistical methods according to indicators of anxiety measured at discrete sets of time intervals by associating them with parameters of the threat stimuli flow taken from statistical data and/or Internet content tracking data.
Issue date (year)
2023
URI
https://etalpykla.vilniustech.lt/xmlui/handle/123456789/153497
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister