Rodyti trumpą aprašą

dc.contributor.authorAbromavičius, Vytautas,
dc.contributor.authorSerackis, Artūras,
dc.contributor.authorKatkevičius, Andrius,
dc.contributor.authorKazlauskas, Mantas,
dc.contributor.authorSledevič, Tomyslav,
dc.date.accessioned2023-12-22T07:05:46Z
dc.date.available2023-12-22T07:05:46Z
dc.date.issued2023.
dc.identifier.issn0928-7329
dc.identifier.other(crossref_id)154827414
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153514
dc.description.abstractBACKGROUND: Physiological signals, such as skin conductance, heart rate, and temperature, provide valuable insight into the physiological responses of students to stress during examination sessions. OBJECTIVE: The primary objective of this research is to explore the effectiveness of physiological signals in predicting grades and to assess the impact of different models and feature selection techniques on predictive performance. METHODS: We extracted a comprehensive feature vector comprising 301 distinct features from seven signals and implemented a uniform preprocessing technique for all signals. In addition, we analyzed different algorithmic selection features to design relevant features for robust and accurate predictions. RESULTS: The study reveals promising results, with the highest scores achieved using 100 and 150 features. The corresponding values for accuracy, AUROC, and F1-Score are 0.9, 0.89, and 0.87, respectively, indicating the potential of physiological signals for accurate grade prediction. CONCLUSION: The findings of this study suggest practical applications in the field of education, where the use of physiological signals can help students cope with exam stress and improve their academic performance. The importance of feature selection and the use of appropriate models highlight the importance of engineering relevant features for precise and reliable predictions.eng
dc.formatPDF
dc.format.extentp. 2499-2511.
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.source.urihttps://content.iospress.com/articles/technology-and-health-care/thc235015
dc.source.urihttps://content.iospress.com/download/technology-and-health-care/thc235015?id=technology-and-health-care%2Fthc235015
dc.titlePrediction of exam scores using a multi-sensor approach for wearable exam stress dataset with uniform preprocessing /
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references30
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.engrades prediction
dc.subject.enphysiological signals
dc.subject.enfeature selection
dc.subject.enexam stress
dcterms.sourcetitleTechnology and health care: Selected Papers From the 14th International Conference BIOMDLORE 2023.
dc.description.issueiss. 6
dc.description.volumevol. 31
dc.publisher.nameIOS press
dc.publisher.cityAmsterdam
dc.identifier.doi154827414
dc.identifier.doi10.3233/THC-235015
dc.identifier.elaba183476601


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą