• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pure shear model for crack width analysis of reinforced concrete members

Thumbnail
Date
2023
Author
Sakalauskas, Karolis
Kaklauskas, Gintaris
Metadata
Show full item record
Abstract
Reinforcement corrosion in concrete structures with excessive crack width poses a high risk of reducing the structure's service life. The crack width behavior is one of the most complex aspects of the mechanics of reinforced concrete (RC). With most of the models used in practice being semi–empirical or empirical, very few analytical approaches have been proposed. However, the analytical models lack either accuracy or simplicity, or both. This paper presents a new analytical model, termed the Pure Shear Model, that predicts mean crack width by a simple formula. It is based on the partial interaction tension stiffening model considering a short RC tie subjected to short–term loading. The model assumes elastic material properties and neglects shrinkage, internal cracking, and slip at the interface. It presumes that the only deformations that occur in concrete are the shear strains due to shear lag that are taken constant across the cover thickness. Deplanation of concrete section due to shear lag results in crack width linearly increasing from zero at the bar to its maximum value on the surface of the RC member. Despite the simplicity of the proposed model, its accuracy in predicting mean crack width was shown to be comparable to that of the design code methods.
Issue date (year)
2023
URI
https://etalpykla.vilniustech.lt/xmlui/handle/123456789/153543
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister