Rodyti trumpą aprašą

dc.contributor.authorWang, Yaxian,
dc.contributor.authorWang, Xiaoyu,
dc.contributor.authorBaležentis, Tomas,
dc.contributor.authorWang, Haijun,
dc.date.accessioned2023-12-22T07:06:05Z
dc.date.available2023-12-22T07:06:05Z
dc.date.issued2024.
dc.identifier.issn0195-9255
dc.identifier.other(crossref_id)155308966
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153546
dc.description.abstractFinancial development and energy consumption are expected to exert a significant effect on CO2 emission changes. However, there remains a research gap in optimizing pathways to carbon peaking under financial and energy drivers. This paper constructs a novel model covering finance and energy consumption using the generalized Divisia Index (GDI) method. The GDI allows to quantify the drivers behind the CO2 emission change in China during 2005–2020. Furthermore, it combines a Monte Carlo simulation with scenario analysis to forecast the path of CO2 emissions during 2021–2030. The results demonstrate that energy structure and carbon factor remain the principal drivers for CO2 emission growth in China. Thus, it is still pivotal to optimize energy saving and carbon reduction policies. Financial energy saving has enormous potential for reducing CO2 emissions over time, even though the immediate influence on CO2 emission is not significant. China has a substantial probability of reaching the peaking target in 2026 under the technology breakthrough scenario, whereas in the other two scenarios the target cannot be achieved.eng
dc.formatPDF
dc.format.extentp. 1-11.
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbySocial Sciences Citation Index (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyCurrent Contents
dc.relation.isreferencedbyElsevier Biobase
dc.relation.isreferencedbyEngineering Index
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0195925523003281?via%3Dihub
dc.titleSynergy among finance, energy and CO2 emissions in a dynamic setting: Measures to optimize the carbon peaking path /
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references64
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionSchool of Economics, Beijing Wuzi University Institute for Carbon Peak and Neutrality
dc.contributor.institutionSchool of Economics, Beijing Wuzi University
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.studydirectionJ01 - Ekonomika / Economics
dc.subject.vgtuprioritizedfieldsEV03 - Dinamiškoji vadyba / Dynamic Management
dc.subject.ltspecializationsL102 - Energetika ir tvari aplinka / Energy and a sustainable environment
dc.subject.enfinancial development
dc.subject.enfinancial energy conservation
dc.subject.enCO2 emission
dc.subject.enGeneralized Divisia index model
dc.subject.enMonte Carlo simulation
dcterms.sourcetitleEnvironmental impact assessment review.
dc.description.volumevol. 104
dc.publisher.nameElsevier
dc.publisher.cityNew York
dc.identifier.doi155308966
dc.identifier.doi10.1016/j.eiar.2023.107362
dc.identifier.elaba182784297


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą